
Current Frontiers in Legal Drafting Systems

Marc Lauritsen
Capstone Practice Systems

193 Bolton Road, Harvard, Massachusetts 01451
marc@capstonepractice.com

[A Working Paper for the 11th International Conference on AI and Law, Stanford University, June 2007]

ABSTRACT
Most legal tasks involve document preparation. Drafting
effective texts is central to lawyering, judging, legislating, and
regulating. How best to support that work with intelligent tools
is an ancient topic in AI-and-Law circles. This article surveys
the history and current state of document drafting software and
associated theory. Present frontiers in both of those fields are
identified, and a preliminary sketch is made of a ‘grand unified
theory’ of legal drafting systems.

1. INTRODUCTION
1.1 A note on vocabulary
Readers will note varying terminologies in what follows.
“Document assembly” has most commonly been used to refer to
the technologies discussed here. I have always found that
phrase regrettable, since it really only describes one particular
function that drafting systems can perform. Such systems can
and should provide knowledge-based support for organizing
facts, research, analysis, and other processes as well as specific
documents. Also, it implies a mode of use in which textual
components are combined automatically based on user
responses to extradocumentary queries, whereas other more
directly interactive modes are increasingly supported by the
technologies in question.
“Document modeling” fails to capture the use of models.
“Document automation,” on the other hand, suffers from
overbreadth. It sometimes refers to complementary
technologies such as document management, comparison, and
analysis tools, and word processing features like automatic
numbering and cross-references. And it again implies a degree
of automaticity that doesn’t comport with the mixed initiative
nature of present day and emerging drafting technologies.
Computer-aided, advanced, or intelligent “drafting” systems (in
the sense of composing texts) probably come closest,
encompassing preparation of legislation as well as legal
instruments.

1.2 Basic concepts1
Computer-aided drafting software is reasonably common in the
contemporary legal world. A lawyer, paralegal, secretary, or
do-it-yourselfer works through a series of question/answer
dialogs, perhaps laced with reference material, and the system
assembles a draft document. Or the user picks forms, clauses,
and other components as needed from libraries of options and
alternatives.

1 Parts of this and the next section are distillations of [17].

Sometimes such an application is obtained from a legal
publisher or software vendor. (TurboTax from Intuit is a
familiar consumer example in the United States.) That brings
the benefits of automation with little effort and expense.
Sometimes an organization develops a custom system with a
document assembly “engine,” using its own forms and
experience. That can require a fair amount of up-front time
(thinking through and handling many possible scenarios), but
can result in excellent leverage of practical legal knowledge.
Such systems capture regularities underlying the documents –
what sections, paragraphs, sentences, and words go where under
what circumstances. The software prompts you to make choices
and specify details like names, numbers, dates, and phrases.
Instead of cutting and pasting, you pick desired options or
alternatives from lists. Instead of searching for phrases like
“Lender’s name” and replacing them with your client's name,
you respond to questions and let the computer do the needed
work. Instead of keyboarding lots of text and fussing with
formats, you let the application handle all the predictable
variations, boilerplate, and layout.
Terminology varies among programs. There is usually a
“template” that models a particular kind of document, with
variables and instructions placed at locations that need to
change from case to case. You answer questions in a series of
interview-style dialogs, the responses are stored in an “answer
file,” and the desired document is generated in a common
format like Word, WordPerfect, RTF, or PDF. [Most programs
do not yet directly support Open Document Format (ODF).]
Typically each answer file stores all the data relevant to a single
client or matter, and thus can be used to generate more than one
document or form (e.g., a complaint for divorce, a financial
statement, and various motions in a family law system). When
answers are changed, the documents can be instantly re-
generated.
In addition to basic point-and-shoot clause selection and
fill-in-the-blanks variable replacement, these systems can store
drafting rules and practitioner know-how that guide the hand of
novices and experts alike. For example, a divorce system may
ask about the client's state of residence, financial situation, and
number of children. Then, based on answers to those and
follow-up questions, it will insert appropriate material in the
complaint and associated motions.

2. APPLICATION SOFTWARE
2.1 Word processing beginnings
Document assembly systems had early echoes in the search-and-
replace, macro, merge, and related features of word processing
programs.

 2

Search-and-replace functions allow users to locate all instances
of a given word, phrase, or string of characters and replace them
with another word, phrase, or string. A boilerplate document
with placeholders like [plaintiff], [defendant], [court], and
[attorney for plaintiff] can thus be tailored for a given case by
replacing those phrases with specific information. These
replacements are ordinarily done one at a time, although they
can also be under the control of a macro.
A macro is a series of recorded commands that can be played
back when desired. Macros can retrieve documents, pause for
user input, call other macros, and do anything a computer user
can do from the keyboard.
A merge involves the combination of text from multiple files.
An elementary use (the so-called ‘mail merge’) is creating a
series of customized letters by inserting addresses, salutations,
and other information about different people (contained in a
‘secondary merge file’) into a boilerplate form (a ‘primary
merge file’). Merge routines in modern word processors can
prompt the user for data and launch macros.
Most word processing programs have long supported explicit
programming with conditional branching – i.e., the inclusion of
decision points at which alternative procedures can be followed
depending upon information up to that point, using IF, THEN,
ELSE commands and logical operators like AND, OR, and
NOT.
By chaining together macros and merges, and taking advantage
of common word processing features like automatic paragraph
numbering, it is possible to construct quite satisfactory systems
for automatic assembly of moderately complex documents. But
hard-to-maintain “spaghetti code” often results.

2.2 Specialized programs
Specialized programs for legal document assembly emerged in
the late 1970s and early 1980s. The ABF Processor (developed
by James Sprowl at the American Bar Foundation [23]) and
CAPS (developed by Stan Neeleman, Larry Farmer, and
Marshall Morrise at Brigham Young University) were two of
the earliest research efforts. Commercial products like
Document Modeler, WorkForm, Work Engine, DocuMentor,
FlexPractice, ExperText, and Scrivener soon followed.
These applications offered advantages over word processors,
such as:

 far greater ease of authoring, maintenance, and
distribution of models

 nicer interface for data entry and user guidance
 support for graphical forms
 easy re-use of data across sessions and templates

The same automation of routine text editing processes that made
word processing so pervasive thus became attainable on the
conceptual level of document assembly. If word processors can
be thought of as helping you edit text with power steering, using
advanced drafting tools is like being driven in a (robotically)
chauffeured limousine.
Current document assembly programs use a wide spectrum of
approaches and boast an impressive array of innovative features.
They excel in the richness of their user interfaces and the
sophistication of documentary output. See Section 2.7

(Commercial Engines) for some of the choices and
considerations.

2.3 Important differences
Word processing documents vs. graphical forms. Document
assembly generally encompasses both freely editable word
processing documents and fixed-format, “graphical” forms,
where the background is static and information can only be
placed in pre-designated fields.
Questioning and guidance vs. document generation. In most
document assembly applications users provide information and
make drafting decisions through questionnaire-like screen
dialogs that are outside of a target document. There is a discrete
interface through which questions can be asked and guidance
can be given. Many document assembly tools can in fact be
used to produce information gathering modules, advisory
systems, and intelligent checklists that needn’t result in any
document at all.
Professionals vs. self-help users. Document assembly
technology can be and is being used both by professionals
serving clients and by individuals doing work for themselves.
There are also hybrid scenarios in which the client completes a
computer-based questionnaire on his or her own, and the answer
file goes to the legal professional for further review, revisions,
and document drafting.
Users vs. developers. Document assembly software typically
involves distinct tools and interfaces for end users and
developers. Many features and issues that are critical for people
charged with developing applications are irrelevant to the
ultimate users, and vice versa. Some software choices offer
excellent end user interfaces but clumsy development tools, and
vice versa.

2.4 Online document assembly
The World Wide Web opened up new opportunities for
organizing and delivering document assembly applications.
Any or all of the major components – the engine, templates,
answers, documents, help material – can be served from a Web
server, providing location independence, multi-user access,
client access, ease of use, and other benefits. For law office
staff, a big advantage of Web-based implementations is the
centralization and instant updating of template collections.
Access to robust document automation can be delivered without
special purpose local software having to be purchased, installed,
configured, and maintained. Often just a browser is required,
together with an Internet connection and a printer. For IT
professionals (and budget conscious managers) a single
centralized server and staff can economically provide document
assembly capabilities to hundreds or thousands of users.
Nonetheless, there are still advantages to desktop (full local
processing) modes. For example, built-in library interfaces for
choosing templates, in-context data entry and revision for
graphical forms, the ability to assemble ad hoc combinations of
documents, out-of-the-box database connectivity, clause
libraries, easy local customizations of templates, and the ability
to function while disconnected from the Internet.

2.5 Varieties and venues
Document assembly technology has been applied to everything
from simple thank-you letters to elaborate expert systems that

 3

advise on the laws of many jurisdictions and generate document
sets reaching into hundreds of pages. There is a vast range of
application types. The main polarities include: off-the-shelf vs.
custom-built; in-house vs. client-facing; textual vs. graphical;
question-driven vs. clause-selection; desktop vs. online;
document-oriented vs. interview-focused. The combinatorial
possibilities are staggering.
There’s likewise a great variety of contexts in which document
assembly is used.

Small law firms and legal departments most commonly use
document assembly for routine or high-volume paperwork,
purchasing pre-written template sets when possible. Larger
firms and departments are more likely to develop custom in-
house applications, drawing upon their own precedents and
integrating with knowledge management efforts. But some
practitioners in both settings are increasingly interested in
sophisticated, high-end drafting applications that combine
advanced models of complex documents with rich layers of
annotational guidance. And firms of all sizes are experimenting
with outward-facing applications aimed at clients and non-client
customers.

Corporate law departments are starting to show great interest
in document automation for client self-service. Cisco and
Microsoft, for instance, now provide do-it-yourself sales
contracts, non-disclosure agreements, and software licenses to
their business users. Law departments can off-load routine work
and delight their clients with rapid turnaround, while retaining
control of transactions that vary from pre-approved, “safe”
terms.

In the nonprofit legal services world there have long been
initiatives, on- and off-line. Some legal aid organizations have
developed their own systems and made them available to fellow
programs. An example is Greater Boston Legal Services, whose
family law and eviction defense systems are starting to be used
widely by advocates in Massachusetts. The California-based I-
CAN!™ (www.icandocs.org) project has served interactive
forms to thousands of lay users over the past several years.
“National Public ADO” (Automated Documents Online –
www.npado.org) is a related effort, funded by grants from the
federal Legal Services Corporation and software donations from
LexisNexis.

Courts have taken a strong interest in automated forms as a
response to the deluge of self-represented litigants. Many state
court systems have made their standard forms available as
fillable PDFs, and several (including California, Idaho, and
Utah) have mounted much more sophisticated, interactive
applications. The integration of document automation and e-
filing raises especially interesting possibilities. (See Lauritsen
& Janis 2004 [12].)

Then there are the commercial players that target the consumer
marketplace. There are now many fee-for-service providers of
pre-fabricated forms aimed at self-helpers. See for instance
www.uslegalforms.com, www.smartlegalforms.com, and
www.legalzoom.com. Plus there is a growing universe of non-
lawyer “legal document preparers.” (See, for example,
www.wethepeopleusa.com and www.naldp.org.) These private
sector developments are helping to expand consumer choice –
and shake up a complacent legal profession – but may pose

questions of second-class quality, especially for disadvantaged
citizens. They also do not provide the insurance function of a
lawyer (someone to sue if things go wrong.)
We’re beyond these applications simply operating as power
tools in the hands of skilled professionals. Increasingly they are
being used directly by consumers. People have long done their
own wills and taxes with off-the-shelf packages. Now large
international law firms sell subscriptions to online expert
systems that deliver sophisticated legal analysis without direct
human involvement. Corporate law departments equip field
personnel with do-it-yourself contract assemblers. Courts and
legal aid programs provide intelligent forms for unrepresented
litigants. And lawyer-less entities vend interactive documents
and automated legal assistance over the Web.
Document automation has steadily gained traction in law. We
may be entering a period of faster growth. The signs include
vigorous competition among strong vendors of excellent
products, a large community of qualified consultants, rising
expectations from clients, aggressive new competitors giving
consumers alternatives to the profession, and huge latent
opportunities for process improvement in legal work.

2.6 Professional reception
The craft of lawyerly drafting does not immediately resonate
with advanced technology. Drafters today have come to
appreciate the power-steering aspects of modern word
processors, with cut-and-paste, spell checking, search-and-
replace, auto-numbering, and similar features. Being able to
revise drafts on the fly, insert extended passages with a couple
keystrokes, and quickly manipulate their format and structure
are welcome powers that are now largely taken for granted.
Word processing for the most part is perceived as a power tool
in the hands of a craftsperson.
But technologies that involve more autonomous software
behavior are unsettling to many. Documents that automatically
fill themselves out, or populate themselves with relevant
provisions as users interact with them, can be downright scary.
Lawyers may not be accustomed to working at such speeds.
And the whole concept of interacting with a document under
draft via an extrinsic “interview” can seem an unwelcome
distancing of the drafter from her work.
In part, this is a matter of getting used to a new method of
wordsmithing. Once understood, intelligent document assembly
can be every bit as power-tool-like as word processing. The
drafter makes decisions and specifies information in an interface
that lives above and apart from the words themselves, with
confidence that the right stuff is going in the right place, and
great freedom to recast large segments of the draft by simply
toggling switches. Lawyers who understand the general
operations of a document assembly program, and the specific
logic embedded in a particular model, can achieve both high
efficiency and good professional satisfaction.
New pressures for document quality and auditability arising
from regulatory compliance and ethical concerns will drive legal
and business professionals from today’s artisanal approaches to
drafting toward systems-engineering ones. The business process
change management challenges involved will be daunting for
many organizations.

 4

2.7 Commercial engines
There has been a dizzying variety of technologies, vendors, and
approaches in the legal document assembly universe since the
late 1970s. In a recent exercise I was able to list sixty-five
discrete engines aimed at lawyers that have been commercially
available at some point. (Most are long gone.)
Alan Soudakoff and I did the last comprehensive public roundup
in Law Office Computing (“Shopper’s Guide to Legal Document
Assembly,” [19]). This Consumer-Reports-style analysis of ten
leading products covered several dozen of the most important
comparative features. In more recent private analyses we’ve
identified hundreds of differentiating characteristics.
Here is a very brief and subjective sketch of today’s leading
candidates.

HotDocs from LexisNexis (www.hotdocs.com) has the biggest
market presence and most developed ecosystem. It has an
excellent online knowledgebase, email discussion list, and
consultant community. HotDocs offers the best tool for
automating graphical forms, and has a full-featured Web
implementation. The company continues to release significant
new versions each year.

DealBuilder from Business Integrity (www.business-
integrity.com) is purely Web-based on the user end and offers
an AI-based authoring environment that reduces the need for
traditional template programming. Precedents that are marked
up in ways intelligible to substantive experts can often be
converted automatically into interactive “masters.” Business
Integrity established a beach head in the London Magic Circle
firms, and has made major inroads into top law departments
there and in the US, building on the self-service themes
mentioned above.

GhostFill (www.ghostfill.com) is a vigorous player from
Korbitec in South Africa. It was integrated into the Amicus
Attorney case management software, branded as Amicus
Assembly. It also underlies the new and improved construction
contract software from the American Institute of Architects and
Drafting Wills and Trusts from West Publishing. GhostFill has
a programmer-friendly object-oriented and open architecture,
making it very easy to add functionality. It offers great
flexibility for custom integration, and can be easily hooked up
to databases out of the box.

Rapidocs (www.rapidocs.com) also originated in the United
Kingdom. It includes innovative features that optimize it for
ecommerce applications. It’s also active in the non-lawyer
space – see www.directlaw.com.

Exari (formerly SpeedPrecedent), from Exari (www.exari.com),
is a web-based solution based in Australia with a strong
commitment to open systems and standards, especially XML.

QShift from Ixio Corporation (www.ixio.com) is an Internet
subscription-based application with the slogan “smart document
drafting on demand.” I think of it as a clause manager on
steroids. It has powerful underlying technologies that can take
it in many different directions.

D3 (Dynamic Document Drafting) from Microsystems
(www.microsystems.com/d3) is one of the latest entrants. It has
broken new ground in terms of tight integration with Microsoft
Word (2003 or better). While possibly weak on some of the

more advanced aspects of high-end document automation such
as multi-level repeats, D3 includes styles management, group
security, and collaborative authoring features that aren’t seen in
most other products.

Other active players include Perfectus (www.perfectus.net),
ActiveDocs (www.keylogix.com), and Pathagoras
(www.pathagoras.com). And even though they are no longer
marketed or supported, quite a few offices still use old stars like
CAPS and PowerTXT, or have recently converted from them
to contemporary platforms.
There are of course many relevant software alternatives outside
the specifically legal context, such as Schema
(http://www.schema.de/eds/en/), that legal drafting technologists
would do well to study.

3. APPLICATION FRONTIERS
Almost every imaginable document assembly feature has been
engineered by someone, and the leading products easily cover
all the essentials. The technology is way ahead of what most
users are doing with it. Yet major dimensions of evolution
remain (some previously seen in software species now extinct.)

3.1 Longitudinality
Lawyers have long requested support for automated documents
that can re-assemble themselves (e.g., based on changed deal
characteristics) after a user has edited them (e.g., to reflect
negotiated language adjustments). Right now, most engines are
optimized to produce first drafts. The output document retains
none of the template’s intelligence. The wish is for that
intelligence to survive and be invocable throughout the life of a
transaction. I’ve started to refer to this as “longitudinality.”
Others call it “round tripping,” referring to models that
somehow survive the transit from one software environment to
another and back, or one user to another user and back.
Several past engines, notably thinkDocs and SmartWords, came
close to this. D3 from Microsystems is one of the first new
products to tackle them. I’m aware of comparable plans by
other vendors.
A related notion involves support for “contract lifecycle
management.” Facts entered and decisions made in the drafting
stage can and should have significance for the later disposition
and management of a document, such as who gets to do what
with them and which of the obligations and prohibitions they
embody need to be tracked.
New drafting environments will blur the distinctions between
document generation and document management. Contracts
will increasingly be manufactured for manageability. Decisions
and data used in the drafting process will remain associated with
the document for purposes of its downstream management.
And considerations of manageability will be surfaced as part of
the very drafting process.

3.2 Document as interface
Especially if people are able to continue to invoke the logical
processing power of a template even after they have hand edited
a draft assembled from it, they should be able to do so in a
richly dynamic, intelligent, fully editable document right within
a state of the art word processing system.

 5

With seamless integration of assembly engines and word
processors you can work in the latter as you make choices and
enter information, and move easily between hand editing and
auto-processing. The document itself communicates the
variations it is designed to accommodate.
Our tools should accommodate both those who are comfortable
working in an interactive environment and those who would
rather quickly get to the basic word processor or paper
(including those who prefer to mark up by hand).
Until recently, most advanced document assembly tools
provided little interactivity between the question-and-answer
activity and the assembled document. You did them in
sequence, returning to the questions if the document didn’t turn
out as desired. People should be able to link between questions
and the document contexts they impact. Answers should be
revisable from the location of their impacts in the document.
Real time previewability of documents under assembly was
present in some of the early document assembly engines, but
only in the last couple years has it reappeared in a mainstream
product. HotDocs for instance introduced the preview pane in
its version 6.0, and has regularly extended its power. Now it’s
not only possible to see your document as it would be assembled
given any configuration of answers, but (within some limits)
you can also jump from a question to the locations in the
document that it affects, and conversely, jump from an answer
in the preview to the question that gathered it. Exari has similar
functions.
Tools like Microsystems D3 take this one step further. There,
drafters ‘live’ right within Word, with the questions presented in
its task pane. You can seamlessly switch between hand editing
the text and answering questions that trigger automatic changes.
Several of the other vendors have similar mechanics in the
works. Ideally the task pane will dynamically update itself
based on your insertion point, showing the available parameters
and other metadata relating to the passage(s) it is within.
To link questions with their documentary implications – and
correlatively link document passages with their variable sources,
if any – requires application-level knowledge of such
connections and appropriate mechanics in the user interface.
Such connections are relatively easy for merged variables, but
more challenging for (1) conditional passages, including repeats
and nested forms of both, (2) variables that have multiple
impacts in a document or play roles in compound computations.
More ambitiously, the document editing environment would
enforce models. Objects should not be allowed to be moved in
ways that violate any structural/syntactic (occurrence,
combinatorial, sequential, or subordination) constraints, unless
the user explicitly overrides and creates an exception condition.
A spreading flag could indicate which branches are logically
resolved and which are not. Exceptions should also propagate
up the hierarchy.

3.3 Flexible renderings
Word processors with graphical user interfaces long ago
achieved WYSIWYG (What You See Is What You Get.)
Unfortunately, What You See Is Not All There Is. Especially in
intelligent drafting contexts.

Rendering can be understood as a projection of a higher
dimensional structure onto a 2D surface. Beneath the ‘surface’
words there can be a lot of underlying substructure. Even the
surface in today's word processors is more than just text. It
includes all visible elements of a document (and some of its
interactive functionality)
Users should be able to generate drafts both with and without
commentary or other annotations. Document previews should
render well even if no questions are answered. Color should be
used effectively in both documents and interface.
Users should be able to toggle between a page-laid-out
document and a view (full text or collapsible outline) that shows
possible as well as actual instances of defined document objects.
For instance, optional objects (and potential iterations) could be
grayed out unless used, with identification of the condition(s)
involved, and whether or not they are presently satisfied.
There should be some visual distinction between "not yet
decided whether to use" and "decided not to use." A view mode
should be available that suppresses non-used objects, with a
distinction between choices that were made and choices that
could have been made (and still can be).
Developers especially will find it useful to be able to modularize
and de-modularize on the fly. In other words, flatten out a
hierarchy of inserted subtemplates and computations into a
single layer, effectively expanding/collapsing across such a
hierarchy.
Markup in assembled documents is useful for much more than
re-assemble-ability. Adding or leaving markup in assemblies
supports uses outside the immediate drafting context such as
workflow, document management, and data mining.

3.4 Role versatility
Another frontier involves enabling users to instantly switch
between instance editing and model editing modes (or do both at
once). Scrivener and Visual Workform were among the few
historical products to dabble in that functionality.
Drafters ought to be able to model as they go, expressing such
points as “this document needs to include section X” or “in the
event this transaction ends up having this feature, be sure to
include Exhibit Y.” People should be able to articulate rules, in
addition to just entering texts or adding commentaries.
One arena where role switching is handy is drafting work for
which there is no pre-existing template. A draft might start out
model-less, but gradually include modeling markup, and
possibly give birth to models useful for later purposes.

3.5 Integration of commentary
Flexible management of commentaries and annotations, both
during and after the assembly process, remains elusive.
Drafting systems should be able to deliver the whole spectrum
of know-how expressed in pre-automation forms and
commentaries. They should serve as intelligent gateways to
model documents (forms) and associated commentaries, with as
much interactivity and dynamism as people care to invoke.
You should be able to choose just to see the commentary, but
also enter narrowing specifications, based on deal characteristics
or subjects of interest, so as to create a more manageable, useful
customization or subset of the commentary.

 6

You should be able just to see the form, but also enter narrowing
specifications, so as to create a more matter-specific starting
draft.
If you choose both, you should be able to enter narrowing
answers for both, and also choose how you want the two to be
combined (separate assemblies, back to back in one physical
document, commentaries in footnotes or endnotes, in-line
commentaries in different color or font, or possibly even some
table-ized side-by-side format).
The goal is to provide maximal flexibility to users as to how
long to remain in the template and which of its features to use.
Some people just don't like the idea of document assembly and
may push to their word processor and/or paper early in the
process. Others may choose to exercise a template’s features in
combination with an answer-set over the life of a transaction.
People should be able straightforwardly to get artifacts closely
resembling current forms and commentaries if they prefer not to
work within interactive templates.

3.6 Collaboration
3.6.1 Collaborating with clients
Recent years have seen modest but steady growth in innovative
legal service delivery methods based on distributed document
automation systems. Some law firms have commissioned
systems that package their expertise for use by personnel at
client sites. Often these produce routine documents without
further law firm involvement.
Most contemporary document assembly applications – online
and off – still involve solitary users. One person at a time
interacts with the application to enter information or generate
documents. Sometimes people take turns working on the same
matter or transaction: e.g., a lawyer has her secretary input
basic data. Or a law firm lets its clients interact with intelligent
questionnaires via an extranet as a way to reduce the cost of data
gathering and to dispense background advice.
Even though there’s little evidence yet of these technologies
being put to use in modes where several people work on the
same task at the same time – perhaps the clearest form of
“collaboration” – the sequential, asynchronous lawyer/client
example just given above is encouraging. Some theorists
describe it as the “co-production” of legal work. It’s
straightforwardly done with several of the current Web-enabled
document assembly platforms, including HotDocs, DealBuilder,
and Perfectus.
In addition to private law firm extranets, co-production is
happening now in corporate law departments that provide do-it-
yourself contract assemblers for field personnel. And in non-
profit, pro bono, and “low bono” contexts where people unable
to afford commercial rate lawyers take advantage of
“unbundled” legal services like ghostwriting.

3.6.2 Lawyer-lawyer collaboration
Document automation systems can also be engineered to
facilitate cooperative work among lawyers, both within and
across offices. For example, they can be modularized to allow
specialists to focus on specific aspects of a large transaction:
tax experts here, environmental law gurus here, intellectual
property folks over here. Lead counsel then reviews the
consolidated input and makes final adjustments.

Practice systems can usefully support the partner/associate
relationship. Associates may do much of the answer
configuration and drafting, while supervising partners can
access features for quick review and commentary.
These systems can even be powerful tools for cooperative work
among opposing parties to a deal or dispute. By sharing access
to an interactive drafting environment, attention can be paid to
high level decisions rather than specific wordsmithing, and
revised documentation can be quickly generated. Positions and
issues can be articulated with greater clarity.

3.6.3 Participatory knowledge modeling
Systems should invite users to participate in their growth and
refinement through feedback mechanisms and associated
organizational processes. They should be communally
evolvable, in the sense that corrections and enhancements can
easily be communicated and implemented
Some practice systems provide rudimentary forms of group
authoring, by allowing annotations and textual variations to be
added by users over a network. With proper incentives and
management, such systems can unleash collective energies
typically untapped by single-author installations. The Internet
offers far greater scale for these effects, opening up such
possibilities as published systems that include a built-in
community of collaborating practitioners, virtual court
proceedings, and online dispute resolution spaces. [8]
More advanced forms of collaboration around document models
were explored in the Open Practice Tools initiative, which
sought to apply open-source software concepts to the world of
law practice automation. The basic idea was that some
technologists, lawyers, librarians, knowledge managers,
educators, and computer scientists would join in an open, cross-
organizational, international conversation about common
dimensions of their work. They would settle on some standard
ways to think about and implement legal applications. Practice
area by practice area, participants would evolve shared “concept
maps” that identify the typical data elements, rules, and
processes involved. They would contribute practice software
examples and components to a common repository, while also
following OPT principles in their own private or commercial
applications. The anticipated result was an upsurge in legal
technology innovation, productivity, quality, reusability, and
interoperability. (For more about the OPT vision, see [16].)

3.6.4 Lawyer-technologist co-production
Collaboration between legal professionals and information
system professionals also deserves attention. One obvious
context is the development and maintenance of practice systems.
Developers can weave interactive feedback mechanisms into
their systems in progress, allowing users to point out errors,
omissions, and opportunities for improvement right within
specific application sessions. Systems can be engineered such
that users can add annotations that are immediately available to
fellow users. More ambitiously, lawyers can be enlisted to
pseudo-code document models using standardized mark-up
conventions that are semi-automatically interpretable by the
document assembly engine.

 7

3.6.5 Sharing the work
We need to think creatively about Who Does What When in the
lawyer/client and technologist/lawyer relationships. Co-
production offers a fertile middle ground between do-it-yourself
and trust-me-I’m-the-professional-here. Tilling that soil means
figuring out how tasks are best allocated for mutually effective
results.

3.7 Transparency
Through current features like previews, test assembles, and
answer summaries, users can ferret out some of the logic that
has been programmed into the model they’re using. They can
usually see where their answers (and non-answers) make a
difference. But they would be much better served by
comprehensive tools for showing the underlying logic of models
in use.
Elegant handling of unansweredness is a critical element, both
because unresolved automation provides a useful roadmap to
decisions ahead (and underlying logic), and because often key
facts and decisions remain indeterminate in early stages of
drafting.
Today’s logic-and-variable-embedded model documents ought
somehow to be more intelligible to ordinary end users. Leaving
the “code” or markup present and viewable in assembling
documents serves to educate users about the logical structure of
the model they’re working with, remind them of the choices
they made, and alert them to informational or decisional work
remaining in a drafting project. Users should be able to see the
consequences of their answers.
This involves making unresolved logic optionally visible, and
even resolved passages with presently unselected branches
shown.
Knowing what will happen in general (what questions will I be
asked? what am I in for?) and in particular (what happens if I
make this choice?) is important for a sense of user control. It
should be easy to do quick compares of results with different
answers (what if?). Given the answers I’ve given and the
choices I’ve made, what options do I presently have?

3.8 Task management
In addition to form and commentary automation, systems should
optionally include an intelligent checklist of things to do and
things to consider. Such a dynamic queue might especially
cover things to do and think about in the drafting process. “You
may want to consider ...” “Things to be sure you've covered.”
Users should be able to mark items as done or considered
(ok/dismiss/defer), and enter additional items of their own.
Items should be optionally includable in drafts.
Few present document drafting systems directly support the
tracking and modeling of tasks.

3.9 Historicity
Current engines don’t do a great job in answering questions like
“What came from where?” and “Who did what when where?”
People reasonably want to know the provenance of drafts, text
recommendations, and commentary – where things came from –
‘says who?’ Users should in effect be able to ask the system to
report on its actions – “Here’s what I’ve done. You told me x;
so I did y.”

While the how/who/when of revisions has little bearing on the
current ‘what,’ they can have deep significance for the
pragmatics of drafting processes. Who changed what or where
it came from will impact future acceptance of and attention to a
particular text.
Edit histories are paths in state space, mapping transformations
of texts over time. Full revision history with undo/rollback
should be easy with today's cheap storage and processing.

3.10 Voice, touch, and visualization
Little has yet been done in the legal drafting context to take
advantage of alternative interfaces such as voice and touch. Nor
have we tapped more than the most elementary visual interfaces.
Voice mediated document assembly sessions could use voice
and visual dimensions synergistically - e.g., "give me that red
paragraph"; “not that blue one, the orange one”; “make all the
parts that depend on this condition green.”
You can imagine document components snapping together and
adjusting themselves to the current logical state of the session.
On a large screen-like surface that users interact with directly
using their fingers.

3.11 Multiplicity and simplicity
Most of the above frontiers involve going from one to many.
 From one rendering of a model or draft to multiple –

enabling users and authors to see texts through alternative
structures and filters.

 From one user to multiple – enabling the whole range of
roles to interact with each other synchronously and
asynchronously.

 From one phase to multiple – enabling systems and their
outputs to be used across the life of transactions, with
automation and encoded know-how continuously available.

 From one kind of artifact (classical ‘document’) to many –
more explicitly enabling ‘assembly’ of web pages,
processes, checklists, and other computer-assistable aspects
of legal and related work.

A fundamental challenge, however – especially in light of all
the additional sophistication just described – remains how to
make drafting systems and their artifacts simple to use and
understand. Attention to human factors and usability may be
the most important work yet.

4. THEORETICAL FRONTIERS
4.1 Theory in practice
Many people have thought deeply about legal document
automation over the past several decades, and some built
sophisticated software to embody their ideas. Their collective
work represents a huge knowledge pool, albeit largely uncharted
and inaccessible (except in the scattered files and sieve-like
minds of people like me). Few vendors or developers have had
time or interest to consider (let alone document) theoretical
angles. As a result, it's not uncommon to encounter those who
believe they have 'discovered' techniques that were extant
twenty years ago. That produces great redundancy in document
automation engine implementations, but also lots of innovation
and learning.

 8

While I've personally written many articles on practical
dimensions of legal document modeling – and remain very
active in real world applications – I haven't done much serious
theoretical work on this subject since my Knowing Documents
article at ICAIL 1993 ([14]). As a practicing legal knowledge
systems architect I can only rarely justify work that steps
beyond products, projects, and practical mechanics. But I’ve
had the good fortune to interact with many deep thinkers in the
document automation field, and have been privy to some
spectacular visions.

4.2 Academic and research attention
Thomas Gordon [7] pointed out as early as 1989 that most
commercial products lack the advantages of declarative
knowledge representations, such as automated explanation, do
not handle defaults and exceptions very well, and provide no
support for reasoning in multiple interpretative contexts. They
are still following the procedural markup paradigm associated
with Sprowl, wherein master documents are expressed in terms
of if-then structures, repeat loops, and variables. Neither the
documents nor the legal-factual circumstances occasioning their
particular configurations are explicitly modeled.
Karl Branting was among the earliest to examine the notion of
self-describing documents and their potential role in new modes
of expressing and delivering knowledge pertinent to legal
drafting. His DocuPlanner system [6] used models of
illocutionary and rhetorical structures to make goals and stylistic
conventions explicit, so that documents become “queryable.”
The operators involved in expressing these structures constitute
a grammar that can be used to generate new documents.
One neighboring strand of work has been in the legislative and
regulatory drafting area. Here generally one of the goals is to
produce texts that can easily be searched or automatically
reasoned against, for example in question answering systems.
But drafting support tools also assist in automating the
construction of legal sources, for instance to ensure stylistic and
content requirements and improve formal representations.
Moens [20] summarizes the history and issues in this arena.
Kerrigan and Law [10] used an XML framework to introduce
first order predicate calculus models into the text of regulations.
The Italian Norme in Rete project (Biagoli et al, [2]) shows how
document type definitions can guide the drafting of legislation.
And the new European ESTRELLA project
(http://www.estrellaproject.org) has a ‘workpackage’ on
managing legislative texts and other sources.

4.3 New theoretical directions
Many theoretical frontiers remain unsettled. Two particularly
grab me.

4.3.1 Universal model
I've long felt that the legal document automation field needs a
universal model of computer-aided drafting. A means for all of
a system’s knowledge and behavior to be explicitly declared. A
conceptualization that is sufficiently rich and general to
comprehend both present and foreseeable functionality. My
efforts in Section 5 below are a step in that direction.

4.3.2 Darwin among the documents
How about looking for evolutionary phenomena among the
cognitive tools and materials with which legal professionals
work? It may be productive to apply natural-selection-among-
replicators ideas to documents and precedents. The scarce
resources they compete for are human attention, valuation, and
use. Those with effective contents and Baupläne (body plans,
or blueprints) live on to reproduce themselves through the
preferential adoption of legal drafters. We often see “explosive
speciation” of legal provisions into previously vacant niches.
Provision variations can be understood as competing alleles.
Organisms conveniently “do their thing” without constant
supervision. Could we somehow “grow” drafting systems?
Will it eventually make sense to talk about domestication,
cultivation, hybridization, breeding, and genetic engineering in
relation to our practice tools? How do we inject natural
hardiness into our artificial systems?

5. FRAGMENTS OF GENERAL THEORY
Legal work is a dance of knowledge, deliberation, and action.
One of the most common and important kinds of action in that
dance is text preparation. Documents play into most of what
lawyers know and do. One of the most important forms of legal
technology therefore is automated drafting support.
People in my line of work build machines with words.
Documents that emit documents. Texts that act. Here are
fragments of a general theory of such machines.

5.1 Getting ready
An adequately general theory of legal document automation is
assisted by adopting four preliminary attitudes:
 step back from the mechanics of specific software,
 focus on the knowledge being expressed,
 think beyond the documents, and
 pretend we are not constrained by computing resources.

We’ll do best to work backwards from an imagined ideal world
of perfect memory, with unlimited storage and processing
power, and ignore computational efficiency and other
practicalities for the moment. Let’s also assume complete user
freedom to say whatever they want about anything. All of these
assumptions can later be constrained as necessary.
Most of my examples here relate to drafting of the sort that
occurs in a law office in connection with business transactions,
but the principles are generalizable to other contexts. The goal
is to formulate a conceptual framework that works for any kind
of text composition.

5.2 Basic distinctions
Looseness of terminology (like ‘logic’ and ‘field’) and
conflation of differences (like among different hierarchies and
non-hierarchies – composition, containment, condition nesting,
kind-of, version-of) have caused considerable confusion. Some
of that confusion can be dispelled by recognizing the
fundamental distinctions between:
 In and About – what is said in/by a text vs. what is said

about a text

 9

 Is and Ought – what is (or isn’t) in a text vs. what
should/shouldn’t be in it

 Which and Where – what should be included vs. where it
should it appear

Current word processing and document assembly tools make it
different to express those differences. Microsoft Word, for
instance, typically collapses text and metatext (e.g., comments)
into a single artifact. HotDocs and other assembly engines don’t
let you easily express that something should occur somewhere in
a document, without a relative location being specified.

5.3 Drafting systems
5.3.1 Drafting system
A drafting system consists of
 one or more people engaged in the composition of texts,
 one or more structured collections of texts (textbases),
 software processes operating on those textbases

(autonomously or at the direct behest of people), and
 the physical devices needed to store, process and interact

with the texts.

5.3.2 Functions
Drafting typically involves working on texts with texts.
A legal drafting system is designed to help people create texts.
It does that by (1) enabling them to search for, browse, read, and
copy existing materials and guidance, (2) accepting new texts,
some of which say things about existing texts, and (3)
generating texts of various sorts that change as users interact
with them.

5.3.3 Knowledge components
A wide range of knowledge components (often encountered in
conventional forms and commentaries) are found in drafting
systems. For example:
 What issues need to be dealt with and considerations on

their various resolutions
 Who knows about a kind of transaction
 What words best go where when
 Variations to consider (aggressive stances, compromises)
 What to expect from other parties
 How to react to other side's rejection of certain provisions
 How to gather needed information and raw material
 Questions to ask the client
 Stylistic rules and conventions (e.g., ‘house style’)

Some forms of knowledge aren’t well communicated in flat,
static documents. Dynamic, or modeled, content – with
variability, conditionality, repetition, and annotation – serves
much better.

5.3.4 Commentaries
Many forms of commentary are involved. They may be

 about a particular kind of transaction and its forms in
general, or

 specific to a given matter.

They come in different kinds, such as:
 explanation (of history, purpose)
 guidance (suggestion, recommendation)
 notes about alternative wordings
 links to auxiliary resources

and have different subjects, such as
 a transaction as a whole
 a particular form as a whole
 a specific issue or decision (transactional or drafting)
 a particular passage or context

They can be accessed in different places and ways. Some
naturally are associated with locations in the form, some with
questions to be answered, some with both. Commentary text
may need to vary based on whether it is in context or in
standalone compilation. They may be stored in the application
or in external sources such as websites or databases. Resources
may include links to other memos in a firm's file system,
intranet or web pages, or to experts who can be contacted.

5.3.5 Tasks
There are also many different kinds of things to do, consider,
and decide:
 those unconditionally suggested in any transaction of the

sort covered
 those conditionally suggested based on deal characteristics
 those entered manually by user (specific to a transaction)
 intra-documentary (specific to a particular document)
 inter-documentary (relating to more than one)
 extra-documentary (pertaining to issues and actions outside

of any document)

5.3.6 Triggers for variation
There are many different triggers for variation in a drafting
system, any of which may impact model language, associated
commentary, or suggested issues/actions. For example:
 client type and identity
 counterparty type and identity
 counterparty counsel identity
 industry
 transactional terms
 transactional events (such as a position taken by a

counterparty during negotiation)
 user preferences

5.4 Texts and metatexts
Legal practice systems are usefully conceived as richly
interwoven fabrics of texts and metatexts. This textbase is a
network of objects, a dynamic collection whose nodes and links
change as users interact with it.
Three basic kinds of texts are involved:

 10

 texts intended for some purpose outside the drafting system
(including those presently in progress), which I will refer to
as “documents”;

 textual models and commentaries of various sorts, which I
will refer to as “metatexts,” because they are about other
texts; and

 texts that are neither documents nor metatexts, but play a
role in drafting work, such as scripts, plans, plan models,
and interface definitions.

Let’s consider the associated objects in the imagined network.

5.4.1 Text
A text is a consecutive set of characters or other graphemes
(visual units of potential linguistic significance.)2
Most texts consists of many sub-texts. For instance, the text
‘ABCDE’ includes the following fifteen texts, any of which
might be the subject of attention:

A B C D E

AB BC CD DE

ABC BCD CDE

ABCD BCDE

ABCDE

These can also be understood as falling into this natural
hierarchy, expressed as an outline (omitting duplicate nodes):
 ABCDE
 ABCD
 ABC
 AB
 A
 B
 BC
 C
 BCD
 CD
 D
 BCDE
 CDE
 DE
 E
Since the number of contiguous sub-sets of a text of N
characters is (N2 + N)/2, all non-trivial texts have quite a few.
For instance, a text of 100 characters has 5,050. A text of
10,000 words averaging five letters, together with an equal

2 For present purposes I will mostly talk in terms of texts that can

faithfully be captured in linear (one-dimensional) sequences. Of
course many documents leverage two-dimensional layouts to express
meaning, and such higher-dimensional orderings need to be taken into
account in a full theory.

number of spaces and punctuation, has (60,0002 + 60,000)/2 or
1,800,030,000 sub-texts. For each character added to a text of
length N, N+1 new subtexts become specifiable.
Of course the vast majority of sub-texts are of no interest
whatsoever. But optimal text editing and modeling require that
any arbitrary sub-set be addressable, down to the individual
character or glyph. (The inability of most commercial legal
document management systems to address texts below the
document level, or some document assembly systems to address
objects below the paragraph level, has posed a major limit on
expressiveness.)

5.4.2 Metatext
A metatext is any text that makes a statement about another
text, within or across text objects. A text can also say
something about itself, or about another metatext. It can be
about a specific text, or a defined class of texts.
The things that can be said about text fall into many categories:
 topic (what the referred-to text is about)
 source (where it came from)
 appearance or formatting (how text segments should be

formatted or laid out, e.g., in bold, or in a footnote)
 structural (what part of a part-of hierarchy a segment plays,

e.g., article, section)
 semantic (e.g., date of agreement, plaintiff name)
 purposive (why or teleology; legal or business

requirements)
 explanatory (manual or machine built annotations)

Some kinds of metatexts are peculiarly at home in intelligent
drafting systems. These include:
 logical (variable fields; conditional or repeating text)
 text models (descriptions of required and permitted

elements, e.g., using XML DTD or schema syntax)
Some kinds of texts and metatexts are more pertinent and useful
for drafting purposes than others, but there’s no bright dividing
line between those that are and aren’t.

5.4.3 Text objects
Text objects – the nodes of the imagined network – include
documents, files, email messages, and other kinds of records or
containers used to store, identify, or locate texts. The
granularity of reification is an engineering decision. Specific
features of the ‘about’ links below enable references at sub-
object levels so that arbitrary precision can be achieved.

5.4.4 Versions
A version of a text comes into existence when it is copied, and
the copy can independently be edited. You can also imagine
each change in a document under edit to result in a separate
virtual version.
Different renditions of a document likewise are different
versions. An italicized character is a different character than a
non-italicized one. Even font differences can have intended
significance. Each state of a text that involves any difference in
its contents is a potentially distinct version.

 11

All texts, including metatexts, can be versioned. Deciding
which metatexts of a given text can appropriately be replicated
for a new version of that text raises both accounting
complexities (computing the correct address of the referent text
in the revised object) and semantic challenges (when does a tiny
text edit render the prior commentary invalid?)

5.5 Links among texts
5.5.1 About link
‘About links’ connect two text objects – or locations or
segments within them – where the first is about the second. You
can think of them as directed links or arcs in a network diagram,
with text objects or ranges being the nodes. They memorialize
aboutness.
Sometimes texts are marked up with special tags to signify the
locations or passages about which something is being said, but
such tags are not really “in” the text itself. They signify the
intended object of some other text, a metatext, while collapsing
both into a single virtual layer. Markup schemes like SGML
and XML of course are quite useful insofar as they are both
machine and humanly readable. [21], [22].
Figure 1 shows the several basic ways one text can refer to
another. The bottom square box represents a text object, with a
series of characters and in-line text objects. The leftmost text
object above has something to say about the bottom object as a
whole – for instance, “This is a contract.” The second object
says something about a particular inter-character location – for
instance, “Additional description of performance required here.”
The third object refers to a single character – for instance,
“Underline this.” The fourth object says something about a
range of characters and objects – for instance, “Include only if
counterparty is Stanford Law School.” You could additionally
have an object that refers to a discontiguous collection of
locations and/or passages within another text object.
Figure 2 shows how sub-texts of one text object might be linked
to sub-texts of another object. (There’s also an example of a
link from one part of an object to another part of the same
object.) Figure 3 shows a simple example with multiple texts
and metatexts.
About links have the following properties:
 the address of the metatext (where the content can be

found)
 the specified subject(s) (text object, location, or

characteristics of referent)
 the kind of statement being made (topic labeling, source

describing, logical modeling, etc.)
 the identity of the person or process asserting the link (Says

who?)
 the date and time of assertion

5.5.2 Version link
Directed links can be drawn from each text to objects that have
started out as copies of it. Is-a-version-of links can also be
drawn from part of one text to part of another when the first has
been copied into the second.
When someone adds or deletes a character, every supertext
containing the location at which that addition or deletion occurs

is changed. But only such texts as are affirmatively saved as
discrete objects constitute versions.
A single word processing operation like sorting a list or
searching and replacing can have many local changes that are
unimportant compared to the ‘macro’ change. It makes sense to
store the details of such operations as part of the metadata of the
link between versions, so that the forest is not lost in the trees.
(It’s also a much more compact and meaningful representation
of the delta.)

5.5.3 Similarity links
A system or its users can notice texts that are identical or highly
similar to each other, and connect them with undirected
similarity links. Versions of a text naturally lend themselves to
similarity links.

5.5.4 The Textbase as network
The entire web of texts and links that can be accessed by anyone
within a drafting community is a unified network of text objects
connected by links, mostly directional, and all with types and
other attributes. All nodes are texts, but all texts are not
necessarily nodes. (They may be unindividuated sub-texts.)
A real network will of course be vastly more complex than
Figures 3. There may be millions of text objects, many with
multiple versions, and millions of links connecting versions of
both texts and metatexts. Intelligent filters are needed to
compose relevant subsets for drafting sessions.

5.6 The actors and actions
Two kinds of actors interact with the above text network –
people and software agents. It’s useful to remind ourselves
what kinds of things they do.

5.6.1 People
Document process verbs most associated with human actors
include:
 finding examples and other raw material (resources, grist,

fodder – both in-house and in the outside world), such as
 similar transactions
 similar whole documents and sets
 similar components, clauses
 people with relevant experience

 stitching pieces into new draft
 replacing old transaction-specific material with analogous

material for new transaction
 composing fresh texts
 commenting, critiquing
 negotiating - proposing, reacting, arguing
 revising
 comparing
 proofreading, checking
 finalizing, “freezing”
 modeling
 managing

 12

Note the knowledge tasks going on:
 knowing/deciding what to say
 knowing/deciding how and where to say it
 knowing what one needs to know and decide the above

things

5.6.2 Software
Software performs a wide range of tasks in a drafting system:
 elicit and accept input
 present or display texts and text-like interfaces
 inform
 educate
 remind
 suggest, advise
 supply links to related resources
 warn, alert
 render
 format
 assemble
 record
 learn
 notice gaps, conflicts, ambiguities in models
 interpret, translate

Software thus can serve as an observer and text maker/editor – a
speech-actor in its own right. It acts as a model processor,
actualizer, implementer, enforcer, manager, executor, and
intelligent assistant.
There can be different levels of reaction to human edits:
 watching/observing/recording vs. intervening
 changing something in the current document or interface

(maintaining model compliance or semantic consistency)
 permitting/forbidding/preventing the change
 suggesting changes - volunteering possibilities
 analyzing networks of links
 alerting, reminding

5.7 Document modeling and drafting with
networks of texts and metatexts
Modeling and drafting legal texts within systems based on
networks of texts and metatexts would be substantially different
from today’s practices. And I believe radically more powerful.
Here are some of the differences, and aspects of how I imagine
this working.
 An architecture that separates texts about texts from the

text they are about enables anyone to say anything about
anything at any time, without concerns about file locking
and collisions. Commentary and modeling become fully
distributed activities. They can occur as incrementally,
incompletely, and informally as people like. Many voices
can be heard, and they need not all agree. Drafters can use
as much or as little of that as they wish. Yet both people

and software agents can draw such materials into operative
models when appropriate, with full traceability back to
their origins.

 Modeling can be expressed with respect to entire
community repositories, rather than within the confines of
discrete models or templates. You might still create
discrete models, with associated clouds of metatexts, but
those metatexts will be straightforwardly available for use
in other models and less formally modeled contexts.

 You can express ideas and opinions about texts that are
neither location- nor instance- specific. “Whenever you’re
drafting an XYZ agreement, be sure to cover topics A and
B somewhere.”

 Taxonomies can be bottom-up and folksonomic – and thus
emergent and resilient, rather than top-down and brittle.
Anyone can label anything anyway they wish, although
they are increasingly guided by the patterns that emerge.

 Drafting sessions can be guided by dynamically assembled
collections of modeling metatexts, filtered as needed by
user preferences and harmonized as necessary by
automated routines.

 Specific moves in a system-user drafting session can be
modeled as standardized state transitions from prescriptive
to descriptive metatext. For instance, when a user has
adopted and chosen to process a passage containing a
location as to which a field metatext has been associated
(“Insert plaintiff name here”), her interaction with the
system would result in the given answer (“Smith”) being
tagged with the metatext “Name of plaintiff.” Similarly, a
location starting out with an associated metatext that
instructs one to include some passage IF a certain situation
obtains becomes a passage that is the referent of a metatext
explaining that it is there BECAUSE User X said that that
situation obtained.

 As drafters work they can consult dynamically assembled
windows of metatexts that are associated directly or
indirectly with the passages of text in draft that are
currently in focus.

 Texts that have been composed within a drafting system of
this sort will be far more richly described and thus more
automatically re-processable.

 The network itself can be continually mined for collective
knowledge, using techniques like the PageRank algorithm
for instance to compute the ‘goodness’ of particular
precedents and metatexts.

In short, I believe that a drafting system based on operations
against a network of texts and metatexts offers promising
developments on all of the frontiers described in Section 3
above.

5.8 Engineering challenges
There are daunting challenges to be faced in achieving the
benefits of this new paradigm. The continuous recomputation
of text networks needed to deliver satisfactory performance for a
single law office could well require computing resources on the
order of those now deployed by Google for mapping the entire
global web. Ten years from now, that won’t seem like such a
tall order.

 13

Here are some of the engineering challenges:
 representing texts and links compactly
 efficiently processing the sparse matrices implicit in the

network architecture
 merging textbases from two organizations
 faithfully maintaining links when text is rearranged
 delivering smart cut & paste tools (e.g., to reconcile

models, or to intervene before paste is committed)
 reconciling inconsistencies between models defined or

implied by sets of metatexts

5.9 A further step - Pantextualism
Other components of a more comprehensive practice system can
effectively and intuitively be expressed as texts. While these
are typically not freestanding documents themselves, they can
be referenced in such texts. And while they are not metatexts
(because they are about nondocumentary things), there of course
can be metatexts about them.

5.9.1 Matters and projects
Pieces of information about the case, matter, transaction, or
other project being worked on can be straightforwardly
expressed in text-like data structures that consist of
attribute/value (or question/answer) pairs. Metatexts can be
used to prescribe and describe such structures.

5.9.2 Histories and plans
Sequences of actions that have taken place – or could/should
take place – are naturally expressed as texts. Histories or
narratives contain ordered lists of what is claimed by someone
to have happened. Task (or to-do) lists describe what may or
should/shouldn’t happen. Only future-oriented plans of course
are appropriately marked up with variables, conditions, and
open iterations.

5.9.3 Interface
The interface through which the user operates (both its
appearance, e.g., HTML, and its behavior, e.g., JavaScript) is
essentially just another kind of text, one which can be
dynamically assembled based on models and session data.

5.9.4 Code
Scripts and programs used to control other aspects of system
behavior of course are also texts – which can be modeled and
assembled.

Modeling all of the knowledge objects in a drafting system as
texts and links among texts provides a conceptually satisfying
strategy with tantalizing engineering possibilities. I hope to
refine, expand, and formalize these ideas in a later article.

6. FUTURE DRAFTING
Despite the vast amount of practical and theoretical work that
has been done in the legal document automation field, we’ve
barely dented the surface of opportunity. Only a small fraction
of appropriate applications has been deployed, and significant
improvements in products and theory remain unrealized.
Application progress of course is mostly driven by what markets
want (or at least what vendors think markets want, and think can

be delivered profitably). Not only is demand unclear for
advanced features such as those reviewed here, but significant
investments are required to deliver them commercially. Still,
those features will enable much more powerful and satisfying
drafting experiences, and will draw new attention from
previously reticent drafters. While the transition will likely be
gradual, waves of new functionality could result in pervasively
adopted drafting methodologies largely unseen today:
 When you have a drafting project that doesn’t involve a

radically new or unusual document, you will typically be
guided by a rich fabric of modeling texts, drawn either
from an in-house collection, or from a published set.

 You’ll interact with that modeled knowledge via intelligent
drafting tools that let you work simultaneously in an
interview-like outline of decisions and inputs, and an
evolving, dynamic draft. Both the interview and draft will
be configurable, filterable, and easily navigable.

 You’ll be able to access and add commentaries and
resources in both modes, and turn on views that reveal
alternative details of both your draft and the web of texts to
which it relates.

 Even for model-less contexts, text-network-savvy drafting
tools will be commonplace.

When all is said and done, legal drafting is about what can be
said and done with texts. Our tools should allow us to weave
and navigate richer networks of text as we prepare documents to
accomplish our legal purposes.

ACKNOWLEDGEMENTS
My thanks to Craig Kobayashi, Darryl Mountain, Lavern
Pritchard, Mark Larson, Tom Gordon, and several anonymous
reviewers for useful comments on prior drafts of this article.
This remains a work in progress and further input is heartily
welcomed.

REFERENCES
[1] Armstrong, S. and Lauritsen, M. Working Smarter to Help

Lawyers Work Smart: Linking Education and Information
Technology. Law Firm Governance, Summer 1999.

[2] Biagioli, C., Francesconi, E., Spinosa, P., and Taddie, M.
A legal drafting environment based on formal and semantic
XML standards. In Proceedings of the Tenth International
Conference on Artificial Intelligence and Law. Bologna,
June 2005. pp. 244-245

[3] Branting, L. K. Techniques for Automated Judicial
Document Drafting, International Journal of Law &
Information Technology, 6(2):214-229 (1998).

[4] Branting, L.K., Lester, J., and Callaway, C. Automating
Judicial Document Drafting: A Discourse-Based Approach,
Artificial Intelligence and Law, 6(2-4):105-110 (1998)

[5] Branting, L.K., Callaway, C., Mott, B., and Lester, J.
Integrating Discourse and Domain Knowledge for
Document Drafting. Oslo, Norway, July 14-17, 1999

[6] Branting, L.K., Lester, J., and Callaway, C. A Framework
for Self-Explaining Legal Documents. Proceedings of the
Sixth International Conference on Artificial Intelligence

 14

and Law, June 30-July 3, 1997, University of Melbourne,
Melbourne, Australia, pp. 72-81

[7] Gordon, T. 1989. A Theory Construction Approach to
Legal Document Assembly. In Pre-Proceedings of The
Third International Conference on Logic, Informatics, and
Law, 2:485-498. Florence.

[8] Greenspun, P., and Lauritsen, M. Making Way for
Intelligence in Case Space. In Proceedings of the Fifth
International Conference on Artificial Intelligence and
Law. College Park, Maryland, June 1995.

[9] Hokkanen, J. and Lauritsen, M. Knowledge Tools for
Legal Knowledge Tool Makers. Artificial Intelligence and
Law. (2003)

[10] Kerrigan, S. and Law, Kincho. Logic-Based Regulation
Compliance-Assistance. In Proceedings of the Ninth
International Conference on Artificial Intelligence and
Law. Edinburgh, June 2003, pp. 126-135.

[11] Kiefer, D. and Lauritsen, M. Recent Developments in
Automating Legal Documents. 52 Syracuse Law Review
1091 (2002)

[12] Lauritsen, M. and Janis, B. Going the Last Mile. E-filing
Report, December 2004.

[13] Lauritsen, M. Technology Report: Building Legal Practice
Systems with Today's Commercial Authoring Tools. 1
Artificial Intelligence and Law 87-102 (1992)

[14] Lauritsen, M. Knowing Documents. In Proceedings of the
Fourth International Conference on Artificial Intelligence
and Law. Amsterdam, June 1993.

[15] Lauritsen, M. A Dispatch from the Document Automation
Trenches. Workshop on Automated Document Drafting.
Seventh International Conference on Artificial Intelligence
and Law. Oslo, June 1999

[16] Lauritsen, M. Ontologies and Openness in Law Practice
Automation. Workshop on "Legal Knowledge Systems in
Action," Eighth International Conference on Artificial
Intelligence and Law, St. Louis, Missouri. May 2001
[http://www.capstonepractice.com/OntoOpen.html]

[17] Lauritsen, M. Fall in Line with Document Assembly, Law
Office Computing, February/March 2006, pp. 66-75

[18] Lauritsen, M. Artificial Intelligence and the Real Legal
Workplace. In Lodder and Oskamp eds., Information
Technology & Lawyers: Advanced technology in the legal
domain, from challenges to daily routines (Springer, 2006),
pp. 165-176

[19] Lauritsen, M. and Soudakoff, A. Shopper’s Guide to Legal
Document Assembly. Law Office Computing,
October/November 1997

[20] Moens, M. Improving Access to Legal Information: How
Drafting Systems Help. In Lodder and Oskamp eds.,
Information Technology & Lawyers: Advanced technology
in the legal domain, from challenges to daily routines
(Springer, 2006), pp. 119-136

[21] Poulin, D., Huard, G, and Lavoie, A. The other
formalization of Law: SGML modeling and tagging.
Proceedings of the Sixth International Conference on
Artificial Intelligence and Law, June 30-July 3, 1997,
University of Melbourne, Melbourne, Australia, pp. 82-88

[22] Rothman, A. and Lauritsen, M. Expect XML to Change
the Practice--Markedly, National Law Journal, February 1,
1999, p. C1.

[23] Sprowl, J. 1979. Automating the Legal Reasoning Process:
A Computer that uses Regulations and Statutes to Draft
Legal Documents. 1 Am. B. Found. Res. J. 1-81

x x x x x x � x x x x �� x x � x x x x x x x x x � x x x x x

Statement
about a

text object
as a whole

Statement
about a

particular
location

Statement
about one

piece of
text

Statement
about a
range of

text

 Figure 1

 15

x x x x x x � x x x x �� x x � x x x x x x x x x � x x x x x

x x � x x x x x �x x x x x x �� x x � x x x

 Figure 2

 [MT-2] Employee name [MT-4] Agreement Date

[T-2] The Employee’s Name is Jane Smith [T-3] The Agreement Date is 9/3/06

[MT-1] □ goes here [CT-1] □ formatted as xth day of Month, xxxx

 [MT-3] □ goes here

[T-1] This Employment Agreement, by and between Capstone Practice Systems, Inc.
and ◊, is entered into this ◊.

 Figure 3

