
The Journal of Robotics,
Artificial Intelligence & Law

COURT
PRESS

FULL®

R A I L

Volume 7, No. 1 | January–February 2024

Editor’s Note: Words, Languages, Algorithms, and Much, Much More
Victoria Prussen Spears

Unpacking Averages: Searching for Bias in Word Embeddings Trained on Food and Drug
Administration Regulatory Documents
Bradley Merrill Thompson

Domain-Specific Languages and Legal Applications
Alexis Chun, Meng Weng Wong, and Marc Lauritsen

Equal Employment Opportunity Commission’s Settlement Challenging Simple
Algorithm Provides Warning for Employers Using Artificial Intelligence
Rachel V. See, Annette Tyman, and Joseph R. Vele

To Bot or Not to Bot: SEC’s Proposed Conflict Rules May Stifle Use of Innovation
Sara P. Crovitz, Lawrence P. Stadulis, Peter M. Hong, Aliza S. Dominey, and
Alexa Tzarnas

Copyright Office Seeking Comment on Human Authorship Requirements for
AI-Generated Works
Mark A. Baghdassarian, Zachary B. Fields, and Jonathan R. Pepin

Does a License to “Make” a Patented Product Inherently Include a Right to
Have a Third Party Make the Product or Its Components?
Sophie (Lu) Yan

Sentient Artificial Intelligence and the Rule of Law
Bazil Cunningham

RAILThe Journal of Robotics,
Artificial Intelligence & Law

Volume 7, No. 1 | January–February 2024

 5 Editor’s Note: Words, Languages, Algorithms, and Much, Much
More

 Victoria Prussen Spears

 9 Unpacking Averages: Searching for Bias in Word Embeddings
Trained on Food and Drug Administration Regulatory Documents

 Bradley Merrill Thompson

 19 Domain-Specific Languages and Legal Applications
 Alexis Chun, Meng Weng Wong, and Marc Lauritsen

 43 Equal Employment Opportunity Commission’s Settlement
Challenging Simple Algorithm Provides Warning for Employers
Using Artificial Intelligence

	 	 Rachel	V.	See,	Annette	Tyman,	and	Joseph	R.	Vele	

 47 To Bot or Not to Bot: SEC’s Proposed Conflict Rules May Stifle Use
of Innovation

 Sara P. Crovitz, Lawrence P. Stadulis, Peter M. Hong,
Aliza S. Dominey, and Alexa Tzarnas

 53 Copyright Office Seeking Comment on Human Authorship
Requirements for AI-Generated Works

 Mark A. Baghdassarian, Zachary B. Fields, and Jonathan R. Pepin

 55 Does a License to “Make” a Patented Product Inherently Include a
Right to Have a Third Party Make the Product or Its Components?

 Sophie (Lu) Yan

 61 Sentient Artificial Intelligence and the Rule of Law
 Bazil Cunningham

EDITOR-IN-CHIEF

Steven A. Meyerowitz
President, Meyerowitz Communications Inc.

EDITOR

Victoria Prussen Spears
Senior Vice President, Meyerowitz Communications Inc.

BOARD OF EDITORS

Melody Drummond Hansen
Partner, Baker & Hostetler LLP

Jennifer A. Johnson
Partner, Covington & Burling LLP

Paul B. Keller
Partner, Allen & Overy LLP

Garry G. Mathiason
Shareholder, Littler Mendelson P.C.

Elaine D. Solomon
Partner, Blank Rome LLP

Linda J. Thayer
Partner, Finnegan, Henderson, Farabow, Garrett & Dunner LLP

Edward J. Walters
Chief Executive Officer, Fastcase Inc.

John Frank Weaver
Director, McLane Middleton, Professional Association

THE JOURNAL OF ROBOTICS, ARTIFICIAL INTELLIGENCE & LAW (ISSN
2575-5633 (print) /ISSN 2575-5617 (online) at $495.00 annually is published
six times per year by Full Court Press, a Fastcase, Inc., imprint. Copyright
2024 Fastcase, Inc. No part of this journal may be reproduced in any form—by
microfilm, xerography, or otherwise—or incorporated into any information
retrieval system without the written permission of the copyright owner. For
customer support, please contact Fastcase, Inc., 729 15th Street, NW, Suite 500,
Washington, D.C. 20005, 202.999.4777 (phone), or email customer service at
support@fastcase.com.

Publishing Staff
Publisher: Morgan Morrissette Wright
Production Editor: Sharon D. Ray
Cover Art Design: Juan Bustamante

Cite this publication as:

The Journal of Robotics, Artificial Intelligence & Law (Fastcase)

This publication is sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional services. If legal advice or
other expert assistance is required, the services of a competent professional should
be sought.

Copyright © 2024 Full Court Press, an imprint of Fastcase, Inc.

All Rights Reserved.

A Full Court Press, Fastcase, Inc., Publication

Editorial Office

729 15th Street, NW, Suite 500, Washington, D.C. 20005
https://www.fastcase.com/

POSTMASTER: Send address changes to THE JOURNAL OF ROBOTICS,
ARTIFICIAL INTELLIGENCE & LAW, 729 15th Street, NW, Suite 500,
Washington, D.C. 20005.

mailto:support@fastcase.com
https://www.fastcase.com/

Articles and Submissions

Direct editorial inquiries and send material for publication to:

Steven A. Meyerowitz, Editor-in-Chief, Meyerowitz Communications Inc.,
26910 Grand Central Parkway, #18R, Floral Park, NY 11005, smeyerowitz@
meyerowitzcommunications.com, 631.291.5541.

Material for publication is welcomed—articles, decisions, or other items of interest
to attorneys and law firms, in-house counsel, corporate compliance officers,
government agencies and their counsel, senior business executives, scientists,
engineers, and anyone interested in the law governing artificial intelligence and
robotics. This publication is designed to be accurate and authoritative, but neither
the publisher nor the authors are rendering legal, accounting, or other professional
services in this publication. If legal or other expert advice is desired, retain the
services of an appropriate professional. The articles and columns reflect only the
present considerations and views of the authors and do not necessarily reflect
those of the firms or organizations with which they are affiliated, any of the former
or present clients of the authors or their firms or organizations, or the editors or
publisher.

QUESTIONS ABOUT THIS PUBLICATION?

For questions about the Editorial Content appearing in these volumes or reprint
permission, please contact:

Morgan Morrissette Wright, Publisher, Full Court Press at morgan.wright@vlex
.com or at 202.999.4878

For questions or Sales and Customer Service:

Customer Service
Available 8 a.m.–8 p.m. Eastern Time
866.773.2782 (phone)
support@fastcase.com (email)

Sales
202.999.4777 (phone)
sales@fastcase.com (email)

ISSN 2575-5633 (print)
ISSN 2575-5617 (online)

mailto:smeyerowitz%40meyerowitzcommunications.com?subject=
mailto:smeyerowitz%40meyerowitzcommunications.com?subject=
mailto:support%40fastcase.com?subject=
mailto:sales%40fastcase.com?subject=

Robotics, Artificial Intelligence & Law / January–February 2024, Vol. 7, No. 1, pp. 19–42.
© 2024 Full Court Press. All rights reserved.

ISSN 2575-5633 (print) / ISSN 2575-5617 (online)

Domain-Specific Languages and
Legal Applications
Alexis Chun, Meng Weng Wong, and Marc Lauritsen*

Despite the rise of low-code and no-code development tools and the matura-
tion of large language model approaches in the software world, many legal
software and application tools are still hand coded. One common bottleneck
for legal software and application tools is the domain-specific, knowledge-
based, and experience-based nature of legal practice, which makes legal tech
a highly technical and multi-disciplinary endeavour. Developers often need to
encode legislation, regulations, legal concepts, and other quasi-legal frame-
works in order to ask users the right questions, provide appropriate guidance,
accurately represent legal concepts, or generate the appropriate documents.
The difficulty of faithfully expressing such frameworks within the confines
of custom code or within existing languages (natural or programming), and
the resources required to resolve it, impede innovation. This article analyses
domain-specific languages (DSLs) as promising opportunities to lessen that
difficulty, surveys 15 recent legal DSLs for semantic expressiveness and suit-
ability for industry adoption according to an eight-point framework, and
presents an innovative application of one such DSL to automatically gener-
ate a user-friendly web application, draw related visualizations to aid the
drafter, and transpile to multiple targets for the convenience of researchers
working in other languages.

Introduction

Readily available and inexpensive codified legal know-how is
increasingly critical in both commercial and nonprofit contexts.
Yet it often remains costly and time-consuming to produce.

Most practical legal applications are created and maintained
using laborious hand-coding techniques, often including quite
primitive methods. Most app makers (including one of the authors)
are not professional software developers. That is true within private
law firms and law departments as well as in nonprofit organizations.
Legal application developers who follow the academic literature
have long been aware of methodologies and theories to directly
connect statements of the law with their programmed implementa-
tion, but few so far have taken advantage of them.

In short, much legal app development remains highly artisanal.
Domain-specific languages (DSLs) may offer a solution.

20 The Journal of Robotics, Artificial Intelligence & Law [7:19

This article is organized as follows. Following this introduction,
the second section describes some common forms of interactive
legal applications and their development processes, including two
examples. The third section lays out some of the challenges devel-
opers face and imagined solutions. The fourth section introduces
DSLs and their applicability. The fifth section 5 introduces the
L4 DSL with example screenshots. And the sixth section concludes.

Contemporary Legal Knowledge Engineering

Expert systems and various forms of document automation are
among the most common forms of knowledge-based software found
in law offices in recent decades. A common pattern involves scripted
“interviews” and modelled documents, which are typically fashioned
using procedural code and manual document markup.

Tools like Neota Logic, BRYTER, Contract Express, HotDocs, and
Legito provide integrated development environments within which
such apps can be built and maintained. (There is a wealth of such
tools. One site (https://www.docautodatabase.com/) recently identi-
fied over 200 in the document automation category alone.) Another
collection (with over 5,000) of such applications in the nonprofit
sector in the United States is at LawHelp Interactive (LHI), which
provides interactive guidance and bespoke form assembly without
charge to millions of users. (About a million packages of customized
forms were generated in 2022.) Within its technology stack the main
providers of end-user functionality are HotDocs, from CARET, and
A2J Author, from the Center for Computer-aided Instruction.

Document automation applications are typically driven by the
forms they need to generate (What information should be placed
where under what circumstances?) and by informal know-how
communicated by practitioners (What should users know about the
process they are undergoing? What steps should be taken or avoided
as a practical matter to reach an optimal outcome?). But sometimes
they also need to explicitly reflect the detailed rules expressed in a
statute or regulation. In those situations, scripted interviews and
model documents are not sufficient.

Two Examples

The Uniform Child-Custody Jurisdiction and Enforcement
Act (UCCJEA) has been adopted by 49 U.S. states, the District

https://www.docautodatabase.com/

2024] Domain-Specific Languages and Legal Applications 21

of Columbia, Guam, Puerto Rico, and the U.S. Virgin Islands. It
governs the rules whereby courts decide which have jurisdiction
to adjudicate questions of child custody. Family law applications
typically need to encode aspects of the UCCJEA in order to advise
users and properly complete court forms.

One can find various online resources that attempt to summa-
rize how the UCCJEA “works,” such as shown in Figure 1.

A2J Author provides an easy-to-use environment via which
non-programmers can script “guided interviews.” A built-in map-
per helps users visualize their creations. Some can quickly become
unwieldy, such as that shown in Figure 2.

Figure 1

22 The Journal of Robotics, Artificial Intelligence & Law [7:19

One LHI application, built in A2J Author, that one of the authors
has assisted with was intended to simply guide an inquiring user
as to which court likely has jurisdiction to handle questions about
the custody of their children. Its first page looks like that shown
in Figure 3.

Its associated “map” is quite sparse. See Figure 4.
The challenge for the developer (after a succession of earlier

developers) was to confirm whether the app faithfully followed at

Figure 2

2024] Domain-Specific Languages and Legal Applications 23

least key parts of the UCCJEA, and gave accurate guidance. That
involved in part coming up with an external representation of its
key provisions. One resorted to sticky notes in the attempt (see
Figure 5).

Another less-than-satisfactory effort involved page-by-page
documentation in Word, which also didn’t capture the as-built
logic of this application.

A second application needing to reflect the UCCJEA’s logic
was a HotDocs interview and template set for litigants seeking a
divorce in Washington State. There, a domain expert (practicing
lawyer) struggled to capture that logic so that it could be expressed
in HotDocs code, and ended up finding Excel the best tool for
doing so (see Figure 6).

That in turn was used by the HotDocs expert to create a set of
computations that drive the interview and infer the proper result.
For an example, see Figure 7.

Figure 3

24 The Journal of Robotics, Artificial Intelligence & Law [7:19

Figure 4

2024] Domain-Specific Languages and Legal Applications 25

Figure 5

Figure 6

26 The Journal of Robotics, Artificial Intelligence & Law [7:19

Opportunities and Challenges

The above examples are just briefly sketched to illustrate the
challenges faced by developers and their collaborators. Namely,

1. There is no widely recognized methodology for reliably
incorporating statutory rules into a custom programmed
application.

2. There is no widely recognized method for confirming
whether one’s efforts to so incorporate legal “code” into
such an application were successful. This raises serious
quality control issues.1

3. Domain experts generally are not able to review applica-
tion code itself to satisfy themselves about its completeness
and consistency.

4. Such applications lack automated explainability. They do
not readily interoperate with external specifications or
code. (Most legal apps are poor at explaining themselves
because we haven’t educated them about why particular

Figure 7

2024] Domain-Specific Languages and Legal Applications 27

questions are asked, guidance is offered, and documents
are generated.)

5. From a computer science perspective, these development
processes and ad hoc knowledge representation formats
ignore decades of advances in information management,
software engineering, and programming language theory.

The literature around computable contracts,2 computational
law,3 and Rules as Code4 points to a future in which the above
problems have been solved. What does that future hold?

When building a legal assistance app that needs to reflect a
defined set of rules (from a statute, regulation, or other source of
governance), the developer can access both the natural language
statement of those rules and an unambiguous, machine-readable
equivalent. Software can bidirectionally move between both iso-
morphic forms. Those forms can be used as input to a design-time
process that produces appropriate code for the destination platform.
For instance, interviews can automatically be generated that ask
the minimal set of questions needed to resolve a legal issue. (An
optimal “question tree.”) Alternatively, a run-time process could
deliver needed logic to that platform via an application program-
ming interface (API). Conversely, tools would be available to
generate an external specification of the logic of an application
for purposes of validation, maintenance, and debugging. Tools
could automatically construct graphs, flowcharts, decision trees,
and other visualizations to represent laws and contracts and aid
end-user understanding of legal complexity. Such outputs could
also be used to support in-session explanations of inferences per-
formed against user inputs, meeting the goals of explainability and
algorithmic transparency. The system would usefully identify all
ultimate and intermediate conclusions described in a model, as well
as all predicates and data elements playing roles in rules/inferences.

Moving upstream, certified software encodings could be pub-
lished by government or other relevant authorities. The open-
source movement of the past four decades, overlapping with
the ideals of the rule of law, demand that digital legislation and
regulations should be publicly available for free.5 For example, a
state agency could release a “code companion” library on Github
for consumption by third-party app developers, minimizing the
need for software developers to conduct legislative interpretation.

28 The Journal of Robotics, Artificial Intelligence & Law [7:19

Current tools attempt to achieve some of these goals. Com-
plex computations are not easily implemented in A2J Author, but
HotDocs offers a reasonably complete programming environment
for such things, including parameterized computations and local
variables. Such things can be used to drive questioning and infer-
ences; the challenge is writing, validating, and updating them! A2J
Author is over 20 years old; HotDocs is over 30. The difficulties of
revising software products to support fundamental new function-
ality are well known.

What next-generation technologies could help realize the
vision?

DSLs to the Rescue

In the computer science and software engineering disciplines,
DSLs are a widely accepted approach to making a particular prob-
lem domain more tractable to software and to developers. For
example, the need to structure hypertext data begat HTML; the
need to manage the visual styles and layout of web pages begat CSS;
the need to read from and write to databases containing tabular
data begat SQL. All are DSLs, defined as:6

A domain-specific language (DSL) is a programming language
or executable specification language that offers, through
appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem
domain.

In recent years, academics and software developers have seized
on DSLs as a promising way to enable the vision outlined above.7
Computer scientists have proposed languages and libraries for law
(FormaLex, Catala, OpenFisca); “smart contract” languages have
appeared with the rise of blockchain technologies (Accord Project,
Cardano, Deon Digital’s CSL); and non-blockchain-oriented con-
tract languages have also appeared (FCL from McMaster, Symboleo
from uOttawa, Logical English from Imperial) many of which were
inspired by Jones, Eber, and Seward’s pioneering 2001 paper “Com-
posing Contracts.”8 Others include Stipula, DCR Graphs, Orlando,
McCarty’s LLD, Eiger, and Blawx.9

2024] Domain-Specific Languages and Legal Applications 29

Brief Survey of Legal DSLs

Due to space constraints, the capsule summaries presented in
this section may not do justice to the full vision of each language
but are intended to illustrate the range of approaches to legal DSLs.
A comprehensive survey is beyond the scope of this article. DSLs
such as ACC,10 BCL,11 CL,12 DataLex,13 Lexon,14 and RegelSpraak15
are omitted with regrets.

• OpenFisca: France, 2011; Python API; primarily numerical
calculations for income tax and other quantitative domains;
support for multiple versions of legislation and multiple
jurisdictions (FR, US, UK, AU, NZ).

• Catala:16 France, 2019; external DSL; strong support for
numerical calculations and for isomorphic representation of
statutes expressed in terms of default logic with exceptions.

• FormaLex:17 Buenos Aires, 2011; based on LTL (Linear
Temporal Logic) and intended to discover inconsistencies
using model checking.

• FCL:18 McMaster University, 2018; a type-theoretic
approach to formalizing and reasoning over events, deon-
tics, and real values.

• Symboleo:19 uOttawa, 2020; emphasis on deontic logic,
with support for events, pre- and post-conditions, and
assertions.

• Stipula:20 Italy, 2021; emphasis on timed deontics as state,
with support for assets and the notion of agreement as
synchronization.

• Blawx:21 Canada, 2020; focus on usability through a GUI
based on Scratch; well-formed statements can be con-
structed through drag-and-drop.

• DCR Graphs:22 Copenhagen, 2011; a declarative, event-
based process model developed in partnership with
industry.

• Eiger:23 Switzerland, 2022; embedded Haskell DSL,
deployed at PwC Switzerland.

• Orlando:24 United States, 2021; an academic project featur-
ing a concise CNL, with strong visualization and explain-
ability features, for conveyancing as the initial application
domain.

30 The Journal of Robotics, Artificial Intelligence & Law [7:19

• Accord Project:25 United States, 2019; intended for block-
chain use, provides an executable language, a data modeler,
and a document assembler.

• CSL:26 Copenhagen, 2012; a trace-based external DSL with
support for events and deontics, adapted for blockchain
use and currently the subject of commercialization efforts
at the start-up deondigital.com.

• Logical English:27 Imperial, 2020; web-based logic pro-
gramming with syntactic sugar borrowed from the tradition
of Controlled Natural Languages; uses the Event Calculus
to track state over time.

• Epilog:28 Stanford, 1980s; a member of the logic pro-
gramming family with a focus on databases and unusual
direct support for logic programming in an interactive
web environment.

• Language for Legal Discourse:29 Rutgers, 1989; a sophis-
ticated theoretical basis for converting from legal natural
language to a formalization.

Analytic Frameworks for Legal DSLs

Requirements for legal specification languages have been
previously enumerated. Hvitved30 identifies the following 16
requirements:

1. Contract model, contract language, and a formal
semantics.

2. Contract participants.
3. (Conditional) commitments.
4. Absolute temporal constraints.
5. Relative temporal constraints.
6. Reparation clauses.
7. Instantaneous and continuous actions.
8. Potentially infinite and repetitive contracts.
9. Time-varying, external dependencies (observables).

10. History-sensitive commitments.
11. In-place expressions.
12. Parametrised contracts.
13. Isomorphic encoding.
14. Run-time monitoring.

2024] Domain-Specific Languages and Legal Applications 31

15. Blame assignment.
16. Amenability to (compositional) analysis.

Athan et al.31 identify the following functionalities:

1. Supports modelling different types of rules (constitutive
v. prescriptive).

2. Represents normative effects (e.g., reparation and
compensation).

3. Implements defeasibility (to handle conflicts between
rules).

4. Implements isomorphism.
5. Alternatives (can represent multiple interpretations).
6. Manages rule reification (Jurisdiction, Authority, Temporal

attributes).

We introduce a framework that consolidates the above formal
requirements under semantics and expressiveness (criteria 1-3),
and goes beyond to anticipate usability concerns and suitability
for adoption in industry and government (criteria 4-8):

1. Equipped with a formal semantics describing the language
in terms of its underlying logics (defeasible, default, tem-
poral, deontic, etc.).

2. Capable of expressing a wide variety of contract genres
(such as financial agreements, insurance policies, employ-
ment contracts, and leases).

3. Capable of expressing a wide variety of legislative and
regulative genres (such as criminal law, building permits,
privacy regulations, and even rules of court).

4. Open-source implementation available (some languages
are given only as theoretical constructs without accom-
panying software; others are proprietary).

5. Syntactically “low code” and user friendly with documen-
tation and integrated development environment (IDE)
support (intended to be read and written by an individual
without extensive training in programming or law).

6. Capable of producing explanations for its decisions, in
text or via visual notations.

7. Application-oriented (intended for industry use).

32 The Journal of Robotics, Artificial Intelligence & Law [7:19

8. Oriented toward interoperability (imports from and
exports to other languages and standard formats such as
LegalRuleML, BPMN, and DMN).

As of early 2023, using that framework, a rough assessment
(pace the authors of the languages) produced the analysis shown
in Table 1.

The analysis shows that many legal languages, while rigorously
defined, are focused on relatively narrow areas of concern: either
laws or contracts; either quantitative calculations or state-transition
systems with an emphasis on deontics and verifiability. To real-
ize the vision of wider adoption, additional requirements must
be satisfied, which go beyond the charter of the typical academic
research project.

In 2020, a research program was begun to develop a DSL for
laws and contracts that meets all the above criteria.

Table 1
1 2 3 4 5 6 7 8

OpenFisca Q T T

Catala T Q T T

FormaLex T E T

FCL T E

Symboleo T E T

Stipula T E T T

Blawx T T T T T

DCR Graphs T E E T T

Eiger T T T E T

Orlando T T T T

Accord T T T T

CSL T T T

Logical English T T T T T T T

Epilog T T T T T T

LLD T T

T: true (blanks indicate insufficient information to conclude true; logic pro-
grammers may consider this negation-as-failure).
Q: the primary expression domain is quantitative calculations.
E: the primary expression domain is an event-oriented calculus.

2024] Domain-Specific Languages and Legal Applications 33

The L4 DSL

The remainder of this article identifies L4 as a novel solution in
the space of legal DSLs by informally outlining its semantics and
expressive scope. A brief walkthrough of a real-world use of L4 is
presented to illustrate how it supports innovative applications that
fulfill the features and vision from the third section.

Semantics

The L4 DSL combines first-order logic for reasoning over
“static” decisions such as numerical calculations and Boolean predi-
cates, with the semantics of a state transition system for reasoning
over “dynamic” events and obligations in time. The guards of the
state transitions are expressed using the “static” logic. These two
major sets of semantics—the “statics” and the “dynamics”—are
visualized using circuit diagrams and process workflow diagrams,
respectively. These semantics have been found to be sufficient to
formalize all the case studies encountered so far.

Default Logic

The “static” rules have a concrete syntax that can be considered
a sugared form of Prolog. Default reasoning is supported with the
use of default branches in pattern matches. The runtime reasoner is
augmented with two modes of operation: in “hard” mode, only user
input is used to calculate decisions; in “soft” mode, input elements
can be marked using the typically key word; these defaults are
provisionally accepted into decisions and treated as assumptions
for the user to confirm or deny.

Interactions Between Rules

Legal clauses are frequently prefixed with “notwithstanding,”
“despite,” and “subject to” modifiers. L4 interprets these modi-
fiers as a priority ordering and adjusts rule application and result
chaining accordingly. In this way L4 supports a limited form of
defeasible logic.

Spreadsheet as Interactive Development Environment

With industry adoption in mind, L4 prioritizes a spreadsheet-
based IDE over the traditional text editor. This innovation delegates

34 The Journal of Robotics, Artificial Intelligence & Law [7:19

certain lexing and value-typing functionality from the parser to
the IDE.

In 2021-2022, a case study called for the encoding of a portion
of real-world privacy legislation. The source material spanned
approximately 260 pages of text, including advisory guidelines and
a compliance guide for organizations. The completed encoding
occupied approximately 260 lines of code.

In this case study, the primary rules are as follows: a data
breach, once discovered, must be assessed; and if it is assessed to
be a notifiable data breach, it must be reported to both the relevant
government body and to the affected individuals. Both rounds of
obligations come with deadlines. The decision criteria for whether
a breach is notifiable are complex.

An Example of Constitutive Rules

The decision as to whether a data breach is notifiable can be
expressed using the constitutive rule shown above. The rule is
essentially a Boolean proposition composed with the operators
and, or, not, and unless, where grouping is indicated using lay-
out indentation.

The L4 tooling automatically generates the corresponding deci-
sion diagram in a variety of formats and semantic resolutions. The
simplest format shows the decision nodes in a circuit diagram of
parallel (or) and series (and) elements. The more detailed for-
mat includes the text of each node. This diagram makes it easy to

Figure 8

2024] Domain-Specific Languages and Legal Applications 35

Figure 9

36 The Journal of Robotics, Artificial Intelligence & Law [7:19

quickly form an impression of the overall shape and structure of
the decision logic.

An Example of Prescriptive Rules

The obligation to assess whether a breach is notifiable can be
expressed using the following regulative/prescriptive rule, which
contains deontic, epistemic, and temporal elements.

The workflow diagram corresponding to the full rule set is
rendered in the form of a Petri Net (see Figure 11). Other formal-
isms may follow in future.

Transpilation to Other Formats

Once these rules are parsed into the L4 interpreter’s abstract
syntax tree (AST) and related intermediate representation formats,
they can be rewritten and transpiled to a variety of downstream
representations. As of mid 2023, L4 supports output to JSON, Type-
script, Purescript, and Python. On the road map are other languages
and formats such as DocAssemble, Catala, OpenFisca, Blawx, Pro-
log, and Epilog, as well as interchange standards like LegalRuleML,
BPMN, and DMN. In response to industry demand, other formats
and technology stacks could be added to that list—Neota Logic,
BRYTER, HotDocs, and others are potential transpilation targets
so that enterprises already committed to a document assembly or
contract life cycle management platform can integrate L4 with exist-
ing business processes. Any existing or future academic language
can also be supported as a transpilation target, opening the door
to research cross-compatibility.

Figure 10

2024] Domain-Specific Languages and Legal Applications 37

Figure 11

38 The Journal of Robotics, Artificial Intelligence & Law [7:19

Automated Web App Generation

The encoding of legislation into L4 was a means to an end.
In this case study, the goal was to automate the creation of a
citizen-facing web application from the formalization. To that
end, a reusable toolchain involving a transpiler to Purescript
and a front-end in Vue was developed to convey the legal logic
from the encoding to an interactive application for citizens and
affected enterprises.

As the input spreadsheet is edited, a web application is regen-
erated live, with a typical rebuild time of less than 10 seconds. As
end-users answer the questions presented in the app, the decision
logic attempts to resolve the top-level answer to a “yes” or a “no.”
The L4 toolchain thus meets the description of an “application
generator” as described by Cleaveland.32

This web app is not polished to commercial standards but was
developed as a proof-of-concept to demonstrate the feasibility of
the “Rules as Code” approach. The entire package can be bundled
for further refinement and public-facing delivery.

All components of the system, including front-end IDE sup-
port (in Google Sheets, powered by Google Apps Script), the L4
parser/interpreter toolchain, the visualizers, the transpilers, and
web app infrastructure are available on Github.

Figure 12

2024] Domain-Specific Languages and Legal Applications 39

Conclusions

The pain points of the current legal application development
model can be remedied by the adoption of a DSL-based engineering
methodology. Software engineering principles like “separation of
concerns” advise that rather than implementing the “business logic”
of the law directly in operational software, one should abstract out
representations of the law into an executable specification, in a
DSL with the appropriate semantics. In recent years, following this
motivation, DSLs have been developed in academia and by industry
(typically with blockchain applications in mind), each one explor-
ing a different theoretical approach. In 2019 the authors detected
an opportunity to make a novel contribution, at the intersection
of wide semantic expressivity, “low-code” usability, and a focus on
adoption by industry and governments, through comprehensive
tooling, open-source availability, and planned interoperability with
existing systems. This article presents an encoding of real-world
legislation into L4, presents some of the syntax for constitutive and
prescriptive rules, and shows how a user-facing web application
can be generated automatically.

It is straightforward to envision how the UCCJEA examples
could benefit from this treatment: the encoding language does not
have to be developed ad hoc; the development environment pro-
vides supporting visualizations to aid the drafter; and the accom-
panying tools are responsible for exporting to formats that can be
consumed by downstream applications, if the natively generated
applications are not already sufficient to serve the user. Keeping the
legal rules explicit supports the goals of explainability and transpar-
ency which are increasingly important social priorities. The use of
open DSLs to support legal applications is thereby shown to be a
key ingredient of the vision outlined in this article.

Notes
* Alexis Chun is a co-founder of Legalese, a computational law startup

that applies computer science to law, and the industry director at the Centre
for Computational Law, Singapore Management University. Meng Weng
Wong is a co-founder of Legalese and the principal investigator at the Centre
for Computational Law. Marc Lauritsen, the president of Capstone Practice
Systems and a former senior research associate at Harvard Law School, teaches
courses at Suffolk University in which students build software applications

40 The Journal of Robotics, Artificial Intelligence & Law [7:19

that help with legal work. This research/project is supported by the National
Research Foundation, Singapore under its Industry Alignment Fund—Pre-
positioning (IAF-PP) Funding Initiative. We thank Laurie Garber of the
Northwest Justice Project and Bart Earle of Capstone Practice Systems for
some of the examples in subsection Two Examples. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of National Research Foundation,
Singapore.

1. See, e.g., Marc Lauritsen & Quinten Steenhuis, “Substantive Legal
Software Quality: A Gathering Storm?” 52-62 (June 17, 2019), https://dl.acm
.org/doi/10.1145/3322640.3326706.

2. Harry Surden, “Computable Contracts” (2019), https://papers.ssrn
.com/abstract=2216866.

3. Nathaniel Love & Michael Genesereth, “Computational Law,” in Pro-
ceedings of the 10th International Conference on Artificial intelligence and
Law (ICAIL ’05), Association for Computing Machinery, New York, 205-09
(2005), https://dl.acm.org/doi/10.1145/1165485.1165517.

4. Pia Andrews & Tim De Sousa, “We Can Create Better Results
When We Code the Rules,” Apolitical (Jan. 22, 2020), https://apolitical.co/
solution-articles/en/we-can-create-better-results-when-we-code-the-rules.

5. See Andrew Mowbray, Philip Chung & Graham Greenleaf, “Apply-
ing the Rule of Law in Automated Decision Systems Through Rules as Code”
(AustLII’s Submission to the Robodebt Royal Commission) (Feb. 10, 2023),
https://papers.ssrn.com/abstract=4355989.

6. Arie van Deursen, Paul Klint & Joost Visser, “Domain-Specific Lan-
guages: An Annotated Bibliography,” ACM SIGPLAN Notices 35, 6, 26-36,
(June 2000), https://dl.acm.org/doi/10.1145/352029.352035.

7. E.g., Jason Morris, “Spreadsheets for Legal Reasoning: The Continued
Promise of Declarative Logic Programming in Law” (Apr. 15, 2020), https://
papers.ssrn.com/sol3/papers.cfm?abstract_id=3577239.

8. Simon Peyton Jones, Jean-Marc Eber & Julian Seward, “Composing
Contracts: An Adventure in Financial Engineering,” in Proceedings of the
International Symposium of Formal Methods Europe on Formal Methods
for Increasing Software Productivity (FME ’01), Springer-Verlag, Berlin,
Heidelberg (2001), 435.

9. More on legal DSLs can be found in Shrutarshi Basu, Anshuman
Mohan, James Grimmelmann & Nate Foster, “Legal Calculi (ProLaLa 2022—
Programming Languages and the Law 2022)—POPL 2022,” https://popl22
.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi; and Christopher
D. Clack, “Languages for Smart and Computable Contracts” (2021), https://
arxiv.org/abs/2104.03764.

10. Adam Zachary Wyner, “A Functional Program for Agents, Actions,
and Deontic Specifications,” Lect. Notes Comput. Sci. (2006), 239-56.

https://dl.acm.org/doi/10.1145/3322640.3326706
https://dl.acm.org/doi/10.1145/3322640.3326706
https://papers.ssrn.com/abstract=2216866
https://papers.ssrn.com/abstract=2216866
https://dl.acm.org/doi/10.1145/1165485.1165517
https://apolitical.co/solution-articles/en/we-can-create-better-results-when-we-code-the-rules
https://apolitical.co/solution-articles/en/we-can-create-better-results-when-we-code-the-rules
https://papers.ssrn.com/abstract=4355989
https://dl.acm.org/doi/10.1145/352029.352035
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3577239
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3577239
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://arxiv.org/abs/2104.03764
https://arxiv.org/abs/2104.03764

2024] Domain-Specific Languages and Legal Applications 41

11. S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson & S. Kulkarni,
“Identifying Requirements for Business Contract Language: A Monitoring
Perspective,” Seventh IEEE International Enterprise Distributed Object Com-
puting Conference (2003), https://www.academia.edu/80906747/Identifying_
requirements_for_Business_Contract_Language_a_monitoring_perspective.

12. Seyed M. Montazeri, Nivir K.S. Roy & Gerardo Schneider, “From
Contracts in Structured English to CL Specifications,” Electron. Proc. Theor.
Comput. Sci. 68 (2011), 55.

13. Andrew Mowbray, Philip Chung & Graham Greenleaf, “Explainable AI
(XAI) in Rules as Code (RaC): The DataLex Approach,” SSRN Electron. J. (Apr.
25, 2022), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4093026.

14. Lexon. Retrieved February 12, 2023 from http://www.lexon.tech/.
15. Stijn Hoppenbrouwers, “RegelSpraak: A CNL for Executable Tax

Rules Specification” (January 2021), https://www.academia.edu/74358568/
RegelSpraak_a_CNL_for_Executable_Tax_Rules_Specification.

16. Denis Merigoux, Nicolas Chataing & Jonathan Protzenko, “Catala:
A Programming Language for the Law,” Proc. ACM Program. Lang. 5, ICFP
(2021), 77, 1 (Aug. 19, 2021), https://dl.acm.org/doi/10.1145/3473582.

17. Daniel Gorín, Sergio Mera & Fernando Schapachnik, “A Software
Tool for Legal Drafting,” Electron. Proc. Theor. Comput. Sci. 68, 71-86 (Sept.
13, 2011), https://arxiv.org/abs/1109.2658v1.

18. William M. Farmer & Qian Hu, “FCL: A Formal Language for
Writing Contracts,” in Quality Software Through Reuse and Integration,
Stuart H. Rubin & Thouraya Bouabana-Tebibel (eds.), Springer Inter-
national Publishing, Cham, 190-208 (2018), https://link.springer.com/
chapter/10.1007/978-3-319-56157-8_9.

19. Sepehr Sharifi, Alireza Parvizimosaed, Daniel Amyot, Luigi
Logrippo & John Mylopoulos, “Symboleo: Towards a Specification Lan-
guage for Legal Contracts,” in 2020 IEEE 28th International Requirements
Engineering Conference (RE), 364-69 (2020), https://ieeexplore.ieee.org/
document/9218159.

20. Silvia Crafa, Cosimo Laneve, Giovanni Sartor & Adele Veschetti,
“Pacta sunt servanda: Legal contracts in Stipula,” Sci. Comput. Program. 225,
102911 (Jan. 2023), https://www.sciencedirect.com/science/article/abs/pii/
S0167642322001447?via%3Dihub.

21. Jason Morris, “Blawx: Rules as Code Demonstration,” MIT
Computational Law Report (Aug. 14, 2020), https://law.mit.edu/pub/
blawxrulesascodedemonstration/release/1.

22. Thomas T. Hildebrandt & Raghava Rao Mukkamala, “Declarative
Event-Based Workflow as Distributed Dynamic Condition Response Graphs,”
Electron. Proc. Theor. Comput. Sci. 69, 59-73 (Oct. 19, 2011), https://arxiv
.org/abs/1110.4161v1.

https://www.academia.edu/80906747/Identifying_requirements_for_Business_Contract_Language_a_monitori
https://www.academia.edu/80906747/Identifying_requirements_for_Business_Contract_Language_a_monitori
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4093026
http://www.lexon.tech/
https://www.academia.edu/74358568/RegelSpraak_a_CNL_for_Executable_Tax_Rules_Specification
https://www.academia.edu/74358568/RegelSpraak_a_CNL_for_Executable_Tax_Rules_Specification
https://dl.acm.org/doi/10.1145/3473582
https://arxiv.org/abs/1109.2658v1
https://link.springer.com/chapter/10.1007/978-3-319-56157-8_9
https://link.springer.com/chapter/10.1007/978-3-319-56157-8_9
https://ieeexplore.ieee.org/document/9218159
https://ieeexplore.ieee.org/document/9218159
https://www.sciencedirect.com/science/article/abs/pii/S0167642322001447?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0167642322001447?via%3Dihub
https://law.mit.edu/pub/blawxrulesascodedemonstration/release/1
https://law.mit.edu/pub/blawxrulesascodedemonstration/release/1
https://arxiv.org/abs/1110.4161v1
https://arxiv.org/abs/1110.4161v1

42 The Journal of Robotics, Artificial Intelligence & Law [7:19

23. Alexander Bernauer & Richard A. Eisenberg, “Eiger: Auditable,
Executable, Flexible Legal Regulations” (Sept. 11, 2022), https://arxiv.org/
abs/2209.04939.

24. Shrutarshi Basu & Nate Foster, “A Programming Language for
Future Interests,” Yale Journal of Law & Technology 24, 75, https://yjolt.org/
programming-language-future-interests.

25. Accord Project, https://accordproject.org/.
26. Tom Hvitved, “Contract Formalisation and Modular Implementation

of Domain-Specific Languages,” Ph.D. thesis (2011).
27. Robert Kowalski, Jacinto Dávila Quintero & Miguel Calejo, “Logi-

cal English for Legal Applications” (2021), https://www.doc.ic.ac.uk/~rak/
papers/LE_for_LA.pdf.

28. Epilog, http://logic.stanford.edu/epilog/homepage/index.php.
29. L. Thorne McCarty. Position Paper: LLD Is All You Need (2022).
30. Tom Hvitved, “Contract Formalisation and Modular Implementation

of Domain-Specific Languages,” Ph.D. thesis (2011).
31. Tara Athan, Guido Governatori, Monica Palmirani, Adrian Paschke &

Adam Wyner, “LegalRuleML: Design Principles and Foundations” (2015),
https://link.springer.com/chapter/10.1007/978-3-319-21768-0_6.

32. J.C. Cleaveland, “Building Application Generators,” IEEE Software 5,
4, 25-33 (July 1988), https://ieeexplore.ieee.org/document/17799.

https://arxiv.org/abs/2209.04939
https://arxiv.org/abs/2209.04939
https://yjolt.org/programming-language-future-interests
https://yjolt.org/programming-language-future-interests
https://accordproject.org/
https://www.doc.ic.ac.uk/~rak/papers/LE_for_LA.pdf
https://www.doc.ic.ac.uk/~rak/papers/LE_for_LA.pdf
http://logic.stanford.edu/epilog/homepage/index.php
https://link.springer.com/chapter/10.1007/978-3-319-21768-0_6
https://ieeexplore.ieee.org/document/17799

	chun rail 7-1 cover
	00 rail front matter 7-1
	03 chun

