Reinventing Reinvention

Marc Lauritsen
From The Capstone Letter, Jan/Feb 1991

Until recently CAPS has been the province of a relatively small band of authors. Dozens of law
students in Provo and Cambridge may have learned the basics and written systems, but only
about ten of us have been authoring CAPS systems for more than a year. | understand that the
number of serious CAPS authors at present may soon reach a hundred. In the next few years, it
could exceed a thousand.

With this anticipated growth in our ranks, it's natural to ask: How can we help each other?
What can we learn from each other? What wheels can we avoid reinventing?

Let me begin with a few preliminary observations.

The Talent Spectrum. Some practice system authors start out with a strong grounding in
programming concepts and methods; others encounter those concepts and methods only
through the prism of a tool like CAPS/Author. While it is difficult to generalize, some
advantages and disadvantages seem to be tied to each background.

Previous programmers often come to CAPS with good instincts about system design and pre-
formed intuitions about phenomena like repeat structures. On the other hand, they need to
watch out for being wedded to programming modes that are inappropriate to the CAPS
context, and they can have difficulty understanding the problems and appreciating the ideas of
non-programmers.

Non-programmers bring a freshness of mind and enthusiasm to the authoring process. They
manage to do some things they haven't yet learned are impossible. On the other hand, non-
programmers have a hard time separating out what is great about CAPS from the wonders of
modern software generally, and they may lack an appreciation of the importance of standards,
code documentation, testing, and maintenance.

Many of us are in the situation of having lost our non-programmer innocence without quite
having achieved the true grit status of working comfortably with, say, assembly code. In my
case, a developing proficiency in CAPS has strengthened interests in software engineering,
artificial intelligence, human-computer interface, and related subjects.

Happily, there is no apparent correlation between programming background (or lack thereof)
and authoring success. I've seen representatives from each category of author do miserably

and excellently. The determinative factors lie much deeper. Indeed, authoring prowess, like
general intelligence, is hardly measured on a uni-dimensional scale. There are dimensions of
creativity, elegance, speed, efficiency, consistency, parsimony, etc. There are many rooms in



the mansion of authoring excellence.

The Programming Community. CAPS authoring, of course, is a form of programming, albeit on
a level even more removed from machine language than languages like C, Basic, and Pascal.
And most of us can readily recognize that the knowledge, methods, and insights gained by
"traditional" programmers through decades of programming practice and information science
research are directly applicable to the work we do with CAPS. Nonetheless, | fear we may have
too little traffic with these subjects.

We as a small programming community need to better recognize the commonalities we have
with the software engineering world generally. We should not approach questions of
development methodology, testing, and maintenance as though there had not already been
forty years of international experience in such matters.

Few of us can afford to follow even a representative sample of the massive literature in the
computer science field, or attend even a few of the dozens of major conferences on computer
science each year. But we all gain from paying some attention to the software engineering
community. In addition, we should be willing to make our own contributions to that larger
community.

Now is a particularly appropriate time to draw on these connections. The programming world,
recognizing its own heritage of needless reinvention, is abuzz with talk of new paradigms and
techniques. These currently include object-oriented design, hypertext, interface builders, and
reusable software components. Most of these ideas have been discussed and developed for
well over a decade. Interestingly enough, CAPS incorporated modular programming concepts
and hypertext features long before they became fashionable.

Sharing Ideas on Legal Informatics. While legal informatics has yet to congeal as a mature
discipline, there are pockets of organization. The artificial intelligence and law community now
has biennial conferences, a journal, and an international organization. The American Bar
Association's computer-related interest groups link thousands of technophilic lawyers with
newsletters, meetings, and on-line conferences. The legal education world has the Law and
Computers Section in the American Association of Law Schools, the Center for Computer Aided
Legal Instruction, and over twenty similar centers and consortia internationally. There is a great
deal of information of benefit to CAPS authors being shared in these arenas.

The CAPS/Author Community. CAPS/Author (which | increasingly appreciate as by no means
limited to the law office context) is not doing too badly. It has this specialized newsletter, an
upcoming user conference, and at least one users' group -- the Boston-area CAPS Users Group
(BACUG) that Cliff Jones and | organized last year. Revisions in our practices and in CAPS itself
will be necessary, though, to reap the benefits of the emerging software development trends.

We should, for example, work to promote both voluntary and market-based libraries of CAPS
elements, workfiles, and systems. These can serve as exemplars from which we can learn, and



as reusable objects we can copy. Successive tinkering with such objects should help advance
the state of the art.

And while it is a lot easier now than it used to be to import parts of one workfile into another, |
would like to see Capsoft support such things as "universal" elements that can be referenced by
more than one workfile. (Scrivener, for instance, allows systems to incorporate external
models by reference.) Updates and improvements to such elements would then benefit all
workfiles using them. (It might be useful to think of this as vaguely analogous to the three-
dimensional worksheets now being supported by most spreadsheet programs.) Non-trivial
technical and managerial problems will of course have to be solved before this blurring of
workfile boundaries can take place.

Wheel reinvention and redundant research are not without their advantages. Diversity, even
eccentricity, promotes creativity. We wouldn't want practice system software to become
rutted in sub-optimal procedures and techniques. The time has come, though, for us to widen
the channels of communication -- among ourselves and with other software developers.

We are in a business devoted to promoting the systematization of law practice through
appropriate technology. We espouse the value of form libraries, precedent files, and document
management. We advise our clients not to needlessly re-do work that has already been done
well. The same admonition applies no less to our own activities.

So let's not reinvent reinvention. There are too many good things worth rediscovering, and
new things worth inventing.



